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A B S T R A C T

Power systems worldwide are transitioning towards a more sustainable
electricity supply based on renewable energy sources. At the same time,
other sectors, like heat and transport, are electrified to move away from
fossil fuels to renewable electricity. This major transition comes with new
challenges, opportunities, and players, some of which are addressed in this
thesis. The focus is power system flexibility, a key enabler for renewable
power systems, and the newly emerging sources of decentralised flexibility
in households, whose role is changing in the transitioning power system.
Traditionally, they acted as passive consumers, drawing electricity from
the grid whenever needed. Nowadays, more and more households are
equipped with photovoltaic systems, often in combination with battery
storage, electric vehicle chargers and heat pumps. With their own electricity
generation, storage and flexible demand of electric vehicles and heat pumps,
the opportunity for a more active participation in the power system and
flexibility provision by households arises.

This thesis provides tools and insights for integrating household flexibility
into renewable power systems. In the first part, the flexibility from the
decentralised flexibility options owned by households is estimated in terms
of temporal availability, available power and flexible energy. Flexibility is
important to various aspects of the power system, and different flexibility
needs exist because electricity generation and demand need to be balanced
temporally and geographically. In the second and third parts, the contribu-
tion of decentralised flexibility to the supply of geographic flexibility needs
in German distribution grids and to the supply of temporal flexibility needs
of a 100 % renewable German power system is estimated. The last part of
the thesis deals with the activation of decentralised flexibility by economic
incentives of electricity tariffs and how far well-designed tariffs can help
supply geographic and temporal flexibility needs.

The results show a large flexibility potential from decentralised flexibility
options. At the same time, the available flexibility depends on many as-
pects, like the time and location or consumer willingness to adapt their
behaviour. Another factor is which flexibility needs should be supplied.
The geographic flexibility needs in German distribution grids, measured
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by reinforcement needs and resulting costs, can be significantly reduced
by a flexible operation of decentralised flexibility options. However, they
can not be fully avoided, and the distribution grids must be reinforced to
a certain degree to incorporate high shares of decentralised photovoltaic,
electric vehicles and heat pumps.

On the other hand, the temporal flexibility needs of a fully renewable
German power system, supplied by photovoltaic and wind only, can be net
decreased by deploying decentralised flexibility. Electric vehicles, especially,
significantly reduce short- to medium-term flexibility needs if shifting
between standing times and vehicle-to-grid is enabled. The total flexibility
needs, their division into short-, medium- and long-term energy shifting,
and the influence of decentralised flexibility also depend on the generation
mix. A carefully chosen mix of photovoltaic and wind can thus reduce the
temporal flexibility needs. Generally, decentralised flexibility options can
supply short- to medium-term but not long-term flexibility needs. These
would have to be supplied by other sources in future renewable power
systems.

The right economic incentives can help to untap the potential of decen-
tralised flexibility. Therefore, this thesis investigates the effect of different
electricity tariff designs on geographic and temporal flexibility needs. The
investigated tariffs are combinations of energy-based and capacity-based
network tariffs with constant or time-varying suppliers´ costs. The results
show that if designed well, electricity tariffs can reduce geographic and
temporal flexibility needs. On the other hand, time-varying purely energy-
based tariffs pose the danger of synchronisation and increase in temporal
and geographic flexibility needs, especially at high penetrations of decen-
tralised flexibility. Capacity-based components on peak load and feed-in
can counteract these effects and decrease the flexibility needs.

The supply of flexibility needs is not the only criterion electricity tariffs
must fulfil. To this end, this thesis develops and applies a comprehensive
evaluation framework with the criteria of an efficient grid, fairness and cus-
tomer acceptance and consistency with other political objectives. The evaluation
shows that purely energy-based tariffs overall perform worse than tariffs
including capacity-based price components. It is therefore recommended to
include capacity-based prices in future electricity tariffs.

This thesis highlights the importance of decentralised flexibility in renew-
able power systems. It shows that geographic flexibility needs in German
distribution grids can be significantly reduced by an optimised operation of
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residential electric vehicles, heat pumps and battery storage, and costly rein-
forcement measures delayed. Furthermore, decentralised flexibility options
can supply temporal flexibility needs, especially short- and medium-term
energy shifting on time scales up to a month. The right electricity tariff can
help a system-friendly operation but must be designed carefully so as not
to aggravate the effects of increased penetrations of decentralised flexibility
options. The provided decision and simulation tools, which are all available
open source, can help an informed choice.
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Z U S A M M E N FA S S U N G

Die Transformation des Energiesystems hin zu einer nachhaltigen Energie-
versorgung ist eine der großen gesellschaftlichen Herausforderungen der
heutigen Zeit. Sie umfasst den Umbau des Stromsystems hin zu erneuerba-
ren Energien, aber auch die Elektrifizierung anderer Sektoren, wie Transport
und Wärmeversorgung, um fossile Brennstoffe durch erneuerbaren Strom
zu ersetzen. Dieser weitreichende Umbau birgt Herausforderungen, aber
auch Chancen und neue Player, von denen einige in der vorliegenden Ar-
beit untersucht werden. Der Fokus ist dabei Flexibilität im Stromsystem,
ein Schlüsselelement für ein erneuerbares Stromsystem, und dezentrale
Flexibilitätsoptionen in Haushalten, die die Rolle der Endverbraucher im
sich wandelnden Stromsystem verändern. Traditionell agierten Haushal-
te als passive Verbraucher. Heutzutage sind immer mehr Haushalte mit
dezentraler Photovoltaik, oftmals in Kombination mit Heimspeichern, Elek-
trofahrzeugen und Wärmepumpen ausgestattet. Mit eigener Erzeugung,
Speichern und flexiblen Lasten eröffnet sich die Möglichkeit für eine aktive
Partizipation der Haushalte im Stromsystem und das Potenzial, Flexibilität
bereitzustellen.

Die vorliegende Arbeit beinhaltet Tools und Erkenntnisse zur Integrati-
on von Haushaltsflexibilitäten in ein erneuerbares Stromsystem. Der erste
Teil behandelt Flexibilitätsoptionen und deren Flexibilitätspotential und
bewertet das Flexibilitätspotenzial dezentraler Haushaltsflexibilitäten im
Hinblick auf zeitliche Verfügbarkeit, abrufbare Leistung und flexible Ener-
gie. Flexibilität ist relevant für unterschiedliche Aspekte im Stromsystem
und der benötigte Ausgleich von Stromerzeugung und -verbrauch führt
zu verschiedenen Flexibilitätsbedarfen, da der Ausgleich sowohl geogra-
fisch als auch zeitlich gewährleistet sein muss. Im zweiten und dritten
Teil der Arbeit wird der mögliche Beitrag der Haushaltsflexibilitäten zur
Deckung des geografischen Flexibilitätsbedarfs in deutschen Verteilnet-
zen und des zeitlichen Flexibilitätsbedarfs in einem 100 % erneuerbaren
deutschen Stromsystem untersucht. Der letzte Teil der Arbeit behandelt
ökonomische Anreize durch angepasste Stromtarife und inwieweit solche
Tarife zur Deckung von geografischem und zeitlichem Flexibilitätsbedarf
beitragen können.
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Die Ergebnisse zeigen ein hohes Flexibilitätspotential seitens dezentraler
Flexibilitätsoptionen. Gleichzeitig ist das verfügbare Potential stark abhän-
gig von verschiedenen Faktoren, wie Zeit und Ort oder der Bereitschaft der
Kund*innen, ihr Verbrauchsverhalten anzupassen. Ein anderer relevanter
Faktor für die Effektivität des eingesetzten Flexibilitätspotentials ist, welcher
Flexibilitätsbedarf gedeckt werden soll. Der geografische Flexibilitätsbedarf
in deutschen Verteilnetzen, welcher in Netzausbaubedarf und den resultie-
renden Kosten gemessen wird, kann durch eine optimierte Fahrweise der
dezentralen Flexibilitätsoptionen signifikant reduziert werden. Allerdings
kann der Netzausbaubedarf für hohe Durchdringungen von Photovoltaik,
Elektrofahrzeugen und Wärmepumpen in Haushalten nicht vollständig
vermieden werden.

Im Gegensatz dazu kann der zeitliche Flexibilitätsbedarf in einem erneuer-
baren deutschen Stromsystem, vollständig versorgt durch Photovoltaik und
Windenergie, durch den Einsatz dezentraler Flexibilitätsoptionen effektiv
verringert werden. Elektrofahrzeuge sind besonders geeignet, kurz- und mit-
telfristige Flexibilitätsbedarfe zu decken, wenn Verschieben des Ladebedarfs
zwischen unterschiedlichen Ladeevents und bidirektionales Laden möglich
sind. Der gesamte zeitliche Flexibilitätsbedarf sowie dessen Unterteilung in
kurz-, mittel- und langfristiges Schieben von Energie hängen auch von der
Zusammensetzung des Einspeisemixes ab. Ein sorgsam ausgewählter Mix
aus Photovoltaik und Windenergie kann daher dabei helfen, den zeitlichen
Flexibilitätsbedarf zu begrenzen. Dezentrale Flexibilitätsoptionen können
generell zur Deckung des kurz- und mittelfristigen Flexibilitätsbedarfs
beitragen, nicht aber zum langfristigen Flexibilitätsbedarf. In einem zu-
künftigen erneuerbaren Stromsystem müssten andere Flexibilitätsoptionen
dieses saisonale Verschieben von Energie decken.

Die richtigen ökonomischen Anreize können dazu beitragen, das Flexi-
bilitätspotential von Haushaltsflexibilitäten zu heben und systemdienlich
einzusetzen. Aus diesem Grund untersucht die vorliegende Arbeit den
Einfluss von unterschiedlichen Stromtarifen auf den geografischen und
zeitlichen Flexibilitätsbedarf. Die untersuchten Tarife sind Kombinationen
aus energie- und leistungsbasierten Netzentgelten und konstanten oder
zeitvariablen Strompreisen. Die Ergebnisse zeigen, dass gut designte Tarife
den geografischen und zeitlichen Flexibilitätsbedarf reduzieren können.
Auf der anderen Seite können zeitvariable energiebasierte Preise bei hoher
Durchdringung von dezentraler Flexibilität zu erhöhten Gleichzeitigkeiten
und dem Anstieg von zeitlichem und geografischem Flexibilitätsbedarf füh-
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ren. Leistungsbasierte Preise auf die Spitzenlast und -einspeisung können
diesen Effekt verhindern und die Flexibilitätsbedarfe reduzieren.

Zur Deckung der Flexibilitätsbedarfe beizutragen ist nicht das einzige Kri-
terium, was Stromtarife erfüllen müssen. Daher entwickelt diese Arbeit ein
umfassendes Bewertungssystem für Stromtarife, in denen die Kriterien einer
effizienten Netznutzung, der Fairness und Kundenakzeptanz and der Konsis-
tenz mit anderen energiepolitischen Zielen quantifiziert und gewichtet werden.
Die Anwendung auf Systeme mit hohen Durchdringungen dezentraler
Flexibilität zeigt, dass über die untersuchten Tarife solche mit leistungsba-
sierten Kostenkomponenten im Allgemeinen besser abschneiden als rein
energiebasierte Tarife. Es ist daher empfehlenswert, leistungsbasierte Preis-
komponenten in zukünftige Stromtarife für Haushalte zu integrieren.

Zusammenfassend unterstreicht die vorliegende Arbeit die Relevanz dezen-
traler Flexibilitätsoptionen in erneuerbaren Stromsystemen. Sie zeigt, dass
der geografische Flexibilitätsbedarf in deutschen Verteilnetzen signifikant re-
duziert, und kostenintensive Ausbaumaßnahmen verzögert werden können
mit einer optimierten Fahrweise von Elektrofahrzeugen, Wärmepumpen
und Heimspeichern. Außerdem können dezentrale Flexibilitätsoptionen
zur Deckung des zeitlichen Flexibilitätsbedarfs beitragen, besonders zu
kurz- bis mittelfristigem Flexibilitätsbedarf mit Verschiebebedarfen bis zu
vier Wochen. Ein gut designter Stromtarif kann systemdienliches Verhalten
der dezentralen Flexibilitätsoptionen anreizen, sollte aber leistungsbasierte
Kosten beinhalten, um übermassige Synchronisationseffekte zu vermeiden.
Die bereitgestellten offen verfügbaren Entscheidungs- und Simulationstools
können zu einem informierten Entscheidungsprozess beitragen.
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1
I N T R O D U C T I O N

1.1 background and motivation

The transition of the energy system towards a sustainable energy supply is
one of the greatest challenges in Western society. This transition includes re-
placing conventional fossil-fueled and nuclear power plants with renewable
energy sources and electrifying the transport and heat sectors. With many
of these technologies installed at lower grid levels, the system becomes
more decentralised.

While renewable generation from biomass and hydropower plants is dis-
patchable, a large share of the generation in a future renewable power
system will be covered by variable renewable energy sources (VRES), par-
ticularly solar and wind generation [1], [2]. These sources depend on
intermittent weather conditions and are hard to predict [2], [3]. Since power
generation and demand must always be balanced for a stable system opera-
tion, the intermittency and uncertainty of generation from VRES increases
the need for flexibility [4]. Therefore, power system flexibility is a key en-
abler for implementing high shares of renewable energy [1], [4]. Flexibility
can be provided by many different sources and has always been a crucial
part of power system planning and operations [2], [4]. Possible sources are
the supply-side, demand-side, storage and sector coupling [2].

Traditionally, large-scale assets, like dispatchable power plants and pumped
hydro storage, were the main provider of flexibility to balance supply
and demand. However, conventional power plants, as one of the primary
sources of flexibility, are being replaced by renewable generation [5]. Other
technologies, like pumped hydro storage, have geological requirements and
therefore a natural limit regarding possible expansion [6]. Therefore, the in-
creasing need for flexibility faces a decrease in provision from conventional
sources of flexibility, thus requiring more flexibility from other sources [2],
[5].

Such possible sources include small-scale assets, like residential battery
energy storage systems (BESS) and sector coupling technologies such as

1



2 introduction

electric vehicles (EVs) and heat pumps (HPs) equipped with thermal en-
ergy storage (TES). All these technologies are increasingly installed in the
system [7]–[9].

While the primary goal of sector coupling technologies is the more effi-
cient and sustainable use of energy in the non-electricity sector (i.e. heat
and transport), these technologies also exhibit flexibility in their opera-
tion [2]. EVs are often parked much longer than the charging process takes
place, and their electricity demand could therefore be shifted in time. If
incentivised accordingly, they could even change the charging location,
geographically shifting their demand. The thermal latency of buildings
allows for shifting of the demand of HPs in time, and TES could further
increase the shifting times. Thermal storage is usually cheaper than BESS
and could pose a viable alternative [10].

Nevertheless, the costs for BESS have drastically decreased over the last
years, and more and more BESS are installed in households alongside
photovoltaics (PV) power plants [11]. Furthermore, the primary purpose
of BESS is flexibility provision, and they can therefore contribute to many
different system services [12], [13].

EVs, HPs and PV systems with BESS are increasingly being introduced to
households, changing their role from passive consumers to prosumers ac-
tively interacting with the system. Figure 1.1 shows the recent development
of decentralised flexibility options in Germany [14]–[16]. The numbers of
EVs, HPs and BESS are increasing, and the growth shows an acceleration
in the last years.
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in the last years, own representation with numbers from [14].
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Figure 1.2: Peak load (left) and storage energy capacities (right) with a 100 %
DERs penetration in Germany. The current values for peak load and
storage capacity are obtained from [20] and [21].

With these technologies comes a massive increase in installed capacities
at the lower grid levels but also in available storage. Figure 1.2 shows the
increase in peak load (left) and storage energy capacity (right) for a 100 %
penetration of EVs, HPs and BESS in Germany, i.e. all private vehicles
(48.8 Mio.) are electrified1 and all residential buildings (19.2 Mio.) own a HP
and BESS2. The increase in peak load assumes a simultaneous operation
of all units, which is unrealistic but still an interesting extreme case to
consider. It shows that the newly installed capacities exceed the current
peak load by more than fivefold. Similarly, the storage capacity of the
decentralised flexibility options is not always available for load shifting
and can therefore not be directly compared to existing large-scale storage
capacities. The comparison still highlights that especially EVs introduce
massive amounts of electrical storage into the system, which could be used
to provide flexibility services. So, on one hand, EVs, HPs and BESS will
increase the installed capacities, especially in lower grid levels, thus posing
significant stress on the grids. On the other hand, they also introduce
massive amounts of storage and flexible demand into the system, holding
the potential to help integrate VRES if incentivised accordingly.

The EVs, HPs and BESS that are the focus of this PhD research are owned
and operated by households. In contrast to larger flexible assets, like con-
ventional power plants or large-scale storage units that directly interact
with the market, these smaller assets are not yet incentivised to balance
electricity supply and demand in the system. One possibility for using
their flexibility are time-varying prices, but they also pose the danger of

1 We assume a medium battery size of 70 kWh and slow charging at 3.7 kW chargers in this case.
2 The mean power capacities are assumed to be 3 kW [17] and 5.8 kW [18] and energy capacities

of 16.0 kWh [19] and 8.6 kWh [18] for HPs with TES and BESS.
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increasing simultaneities and peak loads in lower grid levels, requiring
more grid reinforcement [22], [23]. Economic incentive systems, such as
time-varying prices, should therefore try to find the right balance between
the temporal flexibility needs of the whole system and the geographical
flexibility needs of local distribution grids to achieve a system-friendly
operation.

In summary, decentralised flexibility options, i.e. residential BESS, EVs
and HPs, introduce large storage capacities into the system, thus hold-
ing the potential to provide flexibility. However, the available flexibility
depends on the location and time, and consumer comfort should not be
compromised. Under these considerations, it is not yet clear how much
decentralised flexibility options can contribute to flexibility supply and
how to accurately incentivise a system-friendly behaviour. This research
contributes to overcoming these challenges by answering the following
research questions:

• What is the flexibility need in a renewable German power system?

• What share of this flexibility need can be supplied by decentralised
flexibility options?

• Which economic incentive systems are most suitable to stimulate a
system-friendly operation of decentralised flexibility options?

It therefore develops models to quantify the temporal and geographical
flexibility needs in future power systems with high shares of VRES. It
furthermore investigates the influence of decentralised flexibility options on
these flexibility needs. Lastly, different economic incentives are evaluated
on their suitability to help integrate VRES and decentralised flexibility
options.

1.2 thesis outline and contributions

This thesis investigates the contribution of decentralised flexibility in re-
newable power systems. It is divided into four parts, as visualised in
Fig. 1.3. The first part focuses on flexibility options, i.e. technologies that can
adapt their power output or consumption in response to an external signal.
Furthermore, the flexibility potential of decentralised flexibility options is
estimated, meaning the available range of power and energy values that
the flexibility option can take. The second and third parts investigate the
geographical flexibility needs in distribution grids and temporal flexibility needs
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Figure 1.3: Structure of dissertation.

in the German national system. Flexibility needs arise from a mismatch of
electricity generation and demand. These mismatches can occur in the geo-
graphic dimension, requiring transport capacities of electricity grids, and in
the temporal dimension, requiring shifting of generation or demand in time.
For both dimensions, it is investigated in how far an optimised operation
of decentralised flexibility options can reduce the flexibility needs, in other
words contribute to the flexibility supply. The last part investigates economic
incentives to stir geographic and temporal flexibility supply and achieve a
system-friendly operation of decentralised flexibility options. Furthermore,
social and political implications are included in the final evaluation of
the investigated incentives since these influence the practicability of the
proposed measures.

All models and tools that were produced in the course of this PhD re-
search are available open source for further use and refinement. They are
introduced in the respective parts of the thesis, which are further detailed
below.
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1.2.1 Part I: Flexibility Options and their Flexibility Potential

Part one deals with the modelling of flexibility options and the estimation
of their flexibility potential.

Chapter 2 gives the theoretical background on the modelling of flexibility
options and examines their representation in existing open energy mod-
elling tools. Therefore, it introduces a new classification for flexibility and
influencing factors and extracts and examines key factors of flexibility rep-
resentation in the current modelling landscape. It furthermore provides an
evaluation algorithm for decision support in choosing the right modelling
tool for different research questions.

Chapter 3 includes the chosen models and formulations for decentralised
flexibility options used in this thesis, i.e. models for the sizing and opera-
tions of EVs, HPs and BESS. Furthermore, linearised models are provided
for all investigated flexibility options. Such linear model formulations are
important for studies with high geographic and temporal resolution, e.g.
large-scale grid studies to investigate geographic flexibility needs.

In Chapter 4, the flexibility potential of decentralised flexibility options
is estimated. The chosen concept accounts for the temporal availability
and provides the mean available power and average flexible energy of
the different flexibility options. It is used to approximate the flexibility
potential for representative distribution grids and entire Germany for 100 %
penetration of decentralised flexibility options.

1.2.2 Part II: Geographic Flexibility Needs in Distribution Grids

Part two investigates geographic flexibility needs in distribution grids to
incorporate increasing shares of renewable energy and sector coupling
technologies, measured by curtailment and grid reinforcement needs. It fur-
thermore assesses the potential of an optimised operation of decentralised
flexibility options to decrease these geographical flexibility needs.

Chapter 5 introduces the theoretical background and gives an overview of
existing work. In Chapter 6, the optimal power flow formulation used in
this thesis is introduced. The established model formulation is tractable for
large-scale grid studies and allows the investigation of necessary curtailment
and a grid-friendly operation that reduces the grid reinforcement needs.
Such large-scale grid studies are required because of the distributed nature
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of decentralised flexibility options, which are mainly introduced to the low
voltage but also influence higher grid levels.

In Chapters 7 and 8, the model formulation is applied to investigate the
reduction potential in geographical flexibility needs through an optimised
operation of decentralised flexibility options in representative German dis-
tribution grids. Chapter 7 focuses on EVs, which are complex to model since
they can change locations and thus shift electricity demand in the temporal
and geographic dimensions. The results of optimised charging are com-
pared to rule-based charging strategies, and the influence of different levels
of EV flexibility on geographic flexibility supply is investigated.

In Chapter 8, the investigations are expanded to a simultaneous integration
of EVs, HPs and PV systems with and without BESS. The results provide
mean reinforcement costs that can be used in large-scale energy system
models to incorporate distribution grids. Furthermore, the potential to
reduce reinforcement costs through an optimised operation is estimated.
Chapter 9 discusses the results and limitations, and Chapter 10 presents
conclusions drawn from this part of the thesis.

1.2.3 Part III: Temporal Flexibility Needs in the National System

Part three focuses on the temporal flexibility needs in a 100 % renew-
able power system in Germany and investigates which influence and re-
duction potential decentralised flexibility options have on the flexibility
needs.

Chapter 11 summarises existing quantification methods for temporal flexi-
bility. Chapter 12 introduces a new linear optimisation model that quantifies
energy shifting needs on different timescales. The main contribution is a ba-
sic model which allows the incorporation of existing model formulations of
individual flexibility options to assess their influence on temporal flexibility
needs on different time scales. This way, their contribution to the balance of
supply and demand can be measured.

In Chapter 13, the model is applied to a 100 % renewable power system
in Germany to assess the influence of the generation mix and increasing
shares of EVs, HPs and BESS on the temporal flexibility needs. Results and
model formulation are discussed in Chapter 14, and conclusions are drawn
in Chapter 15.
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1.2.4 Part IV: Economic Incentives - Electricity Tariffs

Part four deals with the economic and social dimensions of flexibility
supply from decentralised flexibility options, investigating the influence of
electricity tariff structures on technical, economic and social aspects.

Chapter 16 introduces the background and existing relevant work. Chapter 17
investigates the economic incentives of different electricity tariffs and their
influence on residential consumption profiles. The results allow a detailed
comparison of different combinations of electricity prices and network
tariffs and their effects on geographic and temporal flexibility.

Chapter 18 introduces a two-stage process for evaluating tariff designs. The
first stage comprises extracting the most important decision criteria and
the second stage translating them into a coherent quantitative evaluation
framework. The framework is then applied to the different combinations of
electricity prices and network tariffs under increasing penetrations of DERs.
It aims to provide a holistic and fact-based decision support by including
social and political considerations in addition to technical and economic
ones.

Chapter 19 finally summarises and concludes the findings of this thesis
and gives an outlook into future research directions.
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2
R E P R E S E N TAT I O N I N O P E N E N E R G Y M O D E L L I N G
T O O L S

This chapter gives an introduction to flexibility options and their representation in
existing open energy modelling tools. It is based on the published paper: A. Heider,
R. Reibsch, P. Blechinger, A. Linke and G. Hug, "Flexibility options and their
representation in open energy modelling tools", Energy Strategy Reviews, Vol. 38,
2021 [24]. ©2021 The Authors. Published by Elsevier Ltd.

2.1 motivation

The decarbonisation of power supply systems is crucial for tackling climate
change. For this reason, the international community has committed to
ambitious goals for expanding renewable energy technologies within the
Paris Agreement [25]. To achieve these goals, variable renewable energy
sources (VRES) such as wind and photovoltaics (PV) must play a substantial
role in the supply of electric energy in most countries [1].

The complexity of the energy supply system increases as the share of VRES
grows. This increase in complexity is mainly due to three technological char-
acteristics of VRES: variability, uncertainty and local distribution [3].

In conventional power systems, large-scale fossil-fuelled power plants pro-
vide dispatchable electricity to consumers, following a one-directional
power flow from higher voltage levels to the distribution grid. By introduc-
ing VRES, uncertainty is added to the supply side, due to their varying
output nature. In addition, we observe a much higher granularity of power
plants following the introduction of small-scale decentralised VRES power
plants. This leads not only to an increased challenge in controlling and
operating the power plant fleet but also to bi-directional power flows in
the grid. To keep the system stable and reliable, we must therefore add
and use a broad range of flexibility options to balance supply and demand
both geographically and temporally. In conclusion, flexibility is critical for
designing and operating up to 100 % renewable energy (RE) systems. It is

15
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therefore essential for the planning and operation of future power systems
to consider and study different flexibility options [1].

Since energy systems are highly complex, decision-makers rely heavily on
the predictions of energy system models to find cost-optimal and sustain-
able future supply scenarios [26]. This affects different stakeholder groups
from portfolio planners and power plant operators to grid operators and
policymakers. The incorporation of flexibility into energy systems mod-
elling is therefore a prerequisite for the proper modelling and simulation
of high share RE systems. This can be achieved by accounting for opera-
tional constraints of supply-side technologies and adding new flexibility
options such as strengthened grid networks, storage units and demand side
management (DSM) to existing models.

However, there is no one-size-fits-all solution for including flexibility op-
tions in energy system models. Different research questions call for distinct
modelling approaches. The evaluation of transient stability, for example,
needs a tool with a high temporal resolution in the subsecond range and a
realistic representation of the grid assets. Assessing investment decisions
and long-term energy planning require a much lower temporal resolution
because these models simulate years or even decades of the behaviour of
future energy systems. In general, energy system modelling must strike a
delicate balance between great technical detail and sufficient abstraction
to make problems computable [26]. To achieve this, researchers and mod-
ellers have created a wide range of energy modelling tools covering various
aspects and characteristics of energy systems.

A detailed overview of the existing modelling landscape is required when
selecting the appropriate model to answer specific research questions. Vari-
ous reviews and classifications have been introduced to provide such an
overview [27]–[29]. However, there has not yet been an analysis of energy
system models focusing specifically on flexibility representation. As the
focus shifts towards high share VRES energy systems, it is crucial to un-
derstand the capabilities of existing energy system models (ESMs). Such
understanding allows researchers to select appropriate energy system mod-
els for a specific representation of flexibility options and to identify aspects
that are missing in existing models. In order to fill this research gap, we
address the following open questions: What flexibility options exist, and
how can they be categorised? How are the different dimensions and types
of flexibility represented in open energy modelling tools? What recom-
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mendations can be derived for future implementation of flexibility in open
energy models?

In this study, we conduct a literature review to identify the key technologies
and properties for modelling flexibility. Based on this review, we introduce
a classification of flexibility in power systems and factors that influence the
available flexibility. In the second step, we present a questionnaire that was
sent out to identify the representation of these technologies and properties
in current open energy system models. The results are examined for short-
comings and room for improvement in the representation of flexibility in
the tools surveyed.

The chapter is structured as follows: Section 2.2 summarises the existing
literature on model overviews and classifications of flexibility. It also intro-
duces a new classification of flexibility. Section 2.3 describes the methodol-
ogy we use to obtain the representation of flexibility and gives an overview
on the models considered in the survey. Section 2.4 presents the results,
Section 2.5 the discussion and Section 2.6 the interpretation of the re-
sults.

2.2 background to flexibility options and energy system

models

Flexibility is the ability of a power system to adapt its operation to either
foreseen or unforeseen changes in energy system behaviour, e.g. changes
in network configuration, generation, or load according to local climate
conditions, user needs, or network outage [30], [31]. The underlying prin-
ciple is that supply and demand have to be balanced to allow for stable
system operation. Many different options can enhance the flexibility of
power systems so that high shares of VRES can be integrated. Lund et
al. provide an extensive overview of such measures in [2]. To capture the
representation of these options in modelling tools, it is necessary to identify
all flexibility options and classify them into distinct categories.

A number of approaches exist to classify flexibility options. Table 2.1 sum-
marises the classification schemes found in existing literature. All sources
mention some variation of supply- and demand-side flexibility, storage
and flexibility provided by the grid or its components. Most sources also
mention sector coupling (SC) as another flexibility option. Aggregation
concepts such as smart grids or exchange with neighbouring grid zones are
mentioned as a possibility to increase the utilisation of available sources.
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Figure 2.1: Classification of flexibility in energy systems

The influence of the operating strategy and forecast accuracy are mentioned
less frequently. All of the papers examined also specify the market as a
possibility to enhance power system flexibility. Other recurring factors are
the design of ancillary services (AS) and regulatory design, such as grid
codes.

The literature analysed provides a detailed overview of the different tech-
nical flexibility options. However, only one source introduces a hierarchy,
putting the different types of options into relation with each other [36]. This
interplay does not include all options, however. We therefore introduce a
new classification scheme in an attempt to merge the above-mentioned
approaches, relating technical flexibility and their operation with eco-
nomic and social drivers and adding temporal and geographical dimensions.
Figure 2.1 visualises the proposed classification. Temporal flexibility is the
ability to alter the power input or output in time. This can be achieved by in-
creasing or decreasing power generation or demand. Geographic flexibility
is the ability to match supply and demand from different locations.

We call the technologies available in a power system, forming the basis
of flexibility and therefore focus of the following investigations, flexibility
options. These are further subdivided into five flexibility categories: supply
side, demand side, storage, network and sector coupling. Flexibility options
are restricted by technical constraints within their operation. We call these
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Table 2.1: Overview of flexibility classifications

Source Network Supply Demand Storage SC Opera-
tions

[2] x x x x x o
[32] x x x x x
[4] o x x x (x) o

[33] x x x x o
[34] (x) x x x
[35] x x x x o
[36] x x x x x x
[37] x x x x x

Source Aggre-
gation

Fore-
casting

Regu-
lations Market AS Inter-

play

[2] o o (o) x x (o)
[32] (x) x (x) x x (o)
[4] (x) o o

[33] x o x x x
[34] x x
[35] o x o o x o
[36] o (o) o x (o) x
[37] x (o) x (o)

x - defined as own category; o - no own category, but mentioned in text;

(x/o) - only partly mentioned
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constraints operational characteristics. Operational characteristics related to
most of the flexibility options are efficiency, ramping, response and recovery
time. Research questions addressing flexibility options and their optimal
combination include: Will future power systems have sufficient flexibility
to incorporate 100 % renewable energy supply? What is the optimal mix of
flexibility options in a highly decentralised future energy system? Which
storage technologies are necessary to ensure system stability?

Traditionally, temporal flexibility has been provided by generation units.
Supply-side flexibility options include fossil- or nuclear-based thermal gen-
eration or dispatchable renewable energy sources (RES). VRES can also
provide temporal flexibility, e.g. by being controlled in curtailed operation
and ramped up during peak demand or curtailed even further. Opera-
tional characteristics of the flexibility of generation units include minimum
and maximum output, ramping constraints and minimum up and down
time.

Another way to provide temporal flexibility is to include the demand side.
This can be achieved using different mechanisms, such as the direct control
of loads by the grid operator. Price incentives used to shift loads to periods
of high power production are another possibility. Direct control has already
been used in the case of industrial loads. Although price incentives and
other control mechanisms for including households and the service sector
have not been used widely, they have become an increasingly prominent
topic of discussion in research [38]. The available flexibility of demand
can be characterised by the maximum deferrable load, shifting time and
recovery time after activation.

A third flexibility option - storage units - have the ability to shift load or
supply over time. They can act as both supply and demand, being able
to draw power from the grid, save it over time and feed it back later. The
most commonly used power storage systems are pumped hydro storage
(PHS). However, there are other storage technologies at different maturity
levels, such as compressed air energy storage (CAES), flywheels, capacitors
and a variety of battery technologies. The flexibility of storage units is
influenced by their capacity, state-of-charge, self-discharge, efficiency and
ageing.

Geographical flexibility is mainly provided by the network, i.e. transmission
and distribution grids. Measures to increase geographical flexibility include
grid extensions, interconnection to other power systems and dynamic
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reconfiguration by switches. Limiting factors include the capacity of lines
and transformers, as well as the current grid configuration.

Sector coupling introduces new technologies into the power system. These
technologies represent a link to other energy sectors such as heat and
transport. Connecting different sectors opens the possibility to use other
energy storage and transport units. Viewing all flexibility options from a
power system perspective, sector coupling elements may act like supply,
demand and storage units. Power-to-X technologies and electric vehicles
(EVs) can serve as both supply and demand technologies. Not only do
sector coupling elements behave like more than one type of flexibility, but
they also connect the temporal and geographic dimension. Fuels produced
by power-to-X, for example, can be moved to other places before being
converted back to power. The flexibility of sector coupling elements is
dependent on the demand, infrastructure and flexibility of the connected
sector; and it is restricted by operational characteristics of the transforming
technology.

As stated in [39], technologies are not the only factors that influence energy
systems. We therefore put the introduced technical flexibility options and
their operation into relation with economic and social drivers. For the later
analysis of the models, however, we focus on flexibility options as such as
the basis of power system flexibility. Therefore, both system operations and
economic and social drivers are considered only marginally in the further
analysis. Nevertheless, they are briefly outlined below.

System operations do not include flexibility options as such, but describe
the interplay and operations of the different players and technologies. It
comprises how flexibility options are operated, which has a strong impact
on the available flexibility. For example, the same battery storage can pro-
vide up and down regulation if operated at around 50 % of its capacity,
whereas it can only provide up regulation when kept at full charging level
to increase supply security. These aspects include unit commitment or
reserve procurement as well as improving the forecast quality of supply
and demand as a measure to decrease the need for flexibility and increase
flexibility supply [2]. Another concept attributed to system operations and
able to make flexibility options available to the system are smart grids. This
concept includes the intelligent monitoring, protection and optimisation of
grid resources at all voltage levels [40]. It poses an alternative to conven-
tional central grid planning with focus on grid reinforcement by expanding
on distributed resources [41] and including storage and demand response.



22 representation in open energy modelling tools

New aggregation concepts such as virtual power plants (VPPs), microgrids
and energy cells also fall into this category. VPPs and microgrids both
enable the inclusion of distributed energy resources (DERs) [42]. Microgrids
often allow an operation in islanded mode and include the grid and its com-
ponents in a limited geographical area. They furthermore utilise hardware
innovations such as smart inverters or switches [42]. VPPs on the contrary
can include components in a large geographical area and combine these
providing access to wholesale markets for smaller units. They depend more
on smart metering and information and communication technology and
already find application in the current system [42]. The idea of energy cells
or so-called system-of-systems approach allows for a complexity reduction
to reduce the operation of the system to a manageable problem size in times
of increasing complexity [43].

Questions relevant to system operations include: How does bidding be-
haviour influence reserves? How much additional flexibility can aggregators
provide? What is the optimal size of independently operating energy cells
in a connected cellular system?

Overlaying drivers that influence system operations and therefore the
availability of flexibility are economic and social ones. Economic drivers cover
the system design, including the market, AS and regulations. Measures
to create greater flexibility through economic drivers include shortening
the trading and reserve procurement time horizons [34], location-specific
pricing, integrating electricity markets [2], designing additional regulation
reserves and flexible ramping products [33]. Research questions associated
with these economic drivers include: What are the optimal procurement
time horizons? Is it necessary to create an additional market for flexibility?
Do we need different ancillary services in a system based on renewable
energy?

Social drivers become increasingly important through the deployment of
DERs as assets of private persons are added to the mix. User behaviour
and acceptance therefore influence the amount of available flexibility. Social
barriers for the deployment of flexibility are mainly behavioural aspects
such as imperfect information, credibility and trust, bounded rationality,
social inertia and personal values other than economic maximisation [43].
Research questions addressing social drivers are: How do user preferences
influence the available flexibility of EVs? Which incentive structures are
the most promising to increase user participation and acceptance in local
flexibility markets?
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Energy system modelling is a valuable tool for answering some of these
questions. It was found that the optimal tool depends heavily on the specific
research questions and the objectives required to answer them [44], [45].
It is therefore crucial to specifically assess the representation of flexibility
options in models in order to evaluate their suitability to answer questions
concerning power system flexibility.

Several papers and other sources provide an overview of the existing mod-
elling landscape in energy system modelling [26], [29], [44]–[50]. Rinkjøb
et al., for example, give a good overview of 75 models, general model
characteristics, and technological and economic parameters, including the
modelled markets [48]. Although they do not mention specific models,
Deng and Lv evaluate the changes in model formulation owing to the
incorporation of renewables [51]. They highlight the growing importance
of short-term system operation, transmission constraints, storage units
and demand-side response in the models. The authors of [52] focus on
social aspects in energy system models and frameworks and find that these
factors are mainly included through exogenous assumptions or in the dis-
cussion of results. They state that approaches exist such as agent-based
modelling which allow for a better representation of social factors and
behavioural aspects but there is still room for improvement within the
examined models. Many of the energy system models and frameworks are
under continuous development and evolve as new questions and energy
policy challenges arise. Review papers can therefore only give a snapshot
of the modelling landscape at the time of the study. To deliver continuous
and up-to-date information on different modelling tools, the Open Energy

Platform provides factsheets on 132 models and frameworks used for
energy system modelling [53]. The online list provided by the openmod

initiative, specifying 50 open source models and frameworks, has a similar
purpose [54].

Considering the representation of flexibility in different models, single
aspects were found to be missing [49] or posing a major challenge for
energy system modelling [48], [51]. To the best of our knowledge, however,
there has not yet been a systematic analysis of energy system models for
the purpose of understanding their representation of flexibility options,
which is why we address this in our study.
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Figure 2.2: Methodological approach

2.3 research design

The methodological approach of this study, shown in Figure 2.2, is divided
into three main parts. The first part involved selecting the models under
analysis. In the second part, we developed a questionnaire to evaluate the
representation of flexibility options in energy system modelling, based on
the classification introduced in Section 2.2. In the third part, we evaluated
the models under examination to assess the representation of flexibility in
the single categories and from a holistic perspective.

2.3.1 Model selection

Various open energy system modelling tools and frameworks exist, as
described in the previous section. In the context of this study, we made a
final selection of 24 models and frameworks1.

In the literature, balancing uncertainty and transparency is mentioned as
one of the major challenges in energy systems modelling [26], and authors
have suggested learning from the open source community. Later, the im-
portance of opening up energy system models to increase the transparency
and quality of research was stressed [55]. In recent model development,

1 From now on, we denote models and frameworks together as models, since the differentiation
between a model and a framework is of no importance for the examination of flexibility
options.
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there has been a recognisable trend towards open source and open access in
energy system modelling [29], [56] and the maturity of open source energy
models has been demonstrated [50]. For these reasons, our study focuses
on open source modelling tools.

We preselected models based on the ESM review specified in Table 2.1,
the Open Energy Platform [53] and the openmod initiative [54]. These
sources were combined with a review of the classification of flexibility types,
which was described in further detail in Section 2.2.

To reach out to a broad audience of open source model users and developers,
we presented the research goal and questionnaire at a workshop hosted
by the openmod initiative, and sent an appropriate request to model
developers in the openmod forum and via its mailing list. The final selection
of models was then made by the developers who responded to the request
and were willing to complete the questionnaire. In addition, the developers
of models that were interesting in terms of flexibility options were contacted
directly and asked to complete the questionnaire (e.g. region4FLEX).

Finally, we collected data from 24 models (including six frameworks). The
majority of these models classify themselves as ESMs, while the others are
called electricity or power system models. Rinkjøb mentions in [48] that,
as a rule, energy models were not actively used before the 2010s. This is
also reflected in our model selection, given that 19 of the 24 models were
published after 2010. The oldest models - Balmorel, EnergyPlan and
OSeMOsys - were developed in the early 2000s. This shows that holistic
energy system modelling is relatively new and in constant evolution. We
selected both widely used models and niche models. To identify how
widely the models have been used, we determined the number of citations
of their first scientific reference. Models such as Times, OSeMOsys, EMMA,
EnergyPlan, Pandapower and PyPsa yield more than 100 citations, while
GridCal, Xeona or OMEGAlpes are cited only a few times.

Appendix A.1 contains a list of all the models and frameworks surveyed, a
brief description of the models and the modelling language on which they
are based. The overview shows that more than half of the models considered
are based on the general-purpose programming language Python and
about a quarter on the algebraic modelling language GAMS.
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2.3.2 Questionnaire with classification of flexibility

As mentioned in Section 2.2, flexibility is becoming crucial when it comes
to planning and designing of the future energy supply structures. In this
context, it is important not only to focus on a few flexibility options, but
also to consider different social and economic drivers and options with
regard to supply, demand, storage, sector coupling, and the network (see all
drivers and options in Figure 2.1). We call the integrated assessment of these
different categories a holistic approach. To pursue this holistic approach, we
derived the following evaluation categories: general characteristics, supply,
network, storage, demand, and sector coupling. These categories provided
the structure of our questionnaire2.

The first section of the questionnaire was dedicated to the general part
which covers general model characteristics, such as temporal and geo-
graphic scope and aspects regarding social and economic drivers. The
second part of the questionnaire focused on the technical operational char-
acteristics of several flexibility options, such as efficiency, ramping rate,
response and recovery time. In the third part of the questionnaire, we asked
about other specifications concerning flexibility options that are connected
to a specific category such as whether or not a minimum load is imple-
mented in conventional power plants. The fourth and final part of the
questionnaire focused on the representation of specific technologies in an
effort to determine whether the model is general enough such that these
technologies can be represented or whether the model already has its own
specific representation. All the specific supply-side, demand-side, storage
and network-related technologies were listed in this section.

Developers of open energy system models3 were sent the questionnaire and
asked to complete it. The flexibility options surveyed are discussed in more
detail in the next subsection, where we evaluated the single categories and
combined them to create a holistic flexibility approach.

2.3.3 Model evaluation

The methodology applied in this work aims to provide an initial evaluation
to simplify the choice of an appropriate open energy model. It assesses

2 The survey at full length is available in the appendix of the original publication [24].
3 The questionnaire for IRENA FlexTool was completed by the authors because the developers

did not respond to our request.
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the level of modelling detail for each flexibility category, and outlines the
suitability of the models for modelling energy or power systems using a
holistic approach. This was realised by rating the models, as summarised in
Table 2.3. For each answer in the questionnaire, a specific rating was given
depending on its importance in the representation of flexibility.

The first part of the evaluation focused on general parameters such as the
spatial and temporal scope, the temporal resolution, the decision-making
process implemented and the representation of probabilistic behaviour and
social factors.

The second part surveyed the technical parameters concerning several
flexibility options. The operational characteristics that were relevant for
all flexibility categories included efficiency, ramping, the response time
and the recovery time after activation. The parameters relevant to the
network were grid representation and the modelling of the import and
export of energy. Another part of the evaluation addressed technology-
specific parameters that influence flexibility. The parameters describing
conventional power plants were minimum load and discrete power plant
capacity expansion as well as those concerning variable renewable energies
such as curtailed operation. Furthermore, the demand side was evaluated
in terms of the implementation of maximum deferrable load, shifting time
and price elasticity. Finally, this part also questioned whether and how
storage, its ageing and self-discharge are implemented.

There are different types of ratings as shown in Table 2.3. Some parameters,
such as temporal and geographic scope, are rated without any hierarchy,
meaning that every ticked box counts as one point. Other factors, such as the
representation of technology, are rated such that one option is preferable to
another, resulting in a higher rating. As an example, predefined technologies
score a whole point, whereas the possibility to implement that technology
earns only half a point. Some parameters, such as decision-making, are
evaluated by means of more complex functions. All detailed ratings can
be found in Appendix A.2. To render the models comparable, the detailed
ratings were added together by

ratingmodel =

n
∑

i∈N

ratingmodel, i

n
,

where n is the number of parameters.
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Table 2.3: Model evaluation overview

Category Content Rating

General
Geographic scope, temporal scope, temporal resolution, probabilistic

behaviour, social factors
All possibilities equally weighted or
yes \ no

Decision making
Descending from decision-/ agent-
based to perfect foresight

Supply
Technologies

Conventional, dispatchable RES, VRES, fuel
cells

Predefined 1 \ possible 0.5

Detailed
characteristics

Technology specifications, operational char-
acteristics, discrete expansion

All possibilities equally weighted

Demand
Technologies Household, industry, service Predefined 1 \ possible 0.5

Detailed
characteristics

Technology specifications, operational char-
acteristics, price elasticity

All possibilities equally weighted

Network
Technologies Grid types, topology Predefined 1 \ possible 0.5

Detailed
characteristics

Grid representation, import \export, ancil-
lary services

Mainly individual rating (see Table
A.2 in Appendix)

Storage
Technologies Long-term, medium-term, short-term Predefined 1 \ possible 0.5

Detailed
characteristics

Technology specifications, operational char-
acteristics, storage implementation

Mostly yes \ -no, sometimes indivi-
dual rating (e.g. ageing)

Continued on next page
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Table 2.3 – Continued from previous page

Category Content Rating

Sector
Coupling

Technologies
Supply technology, demand technology,
storage technology

Predefined 1 \ possible 0.5

Detailed
characteristics

Technology specifications, operational char-
acteristics, sector representation

Individual rating for technology spe-
cifications and sector representation
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2.4 results

The following section presents the results of the analysis. First, Section 2.4.1
provides insights into the outcomes with regard to the general model
characteristics. Second, Section 2.4.2 gives an overview of the representation
of the individual flexibility categories and the coverage of their technical
characteristics. Finally, Section 2.4.3 presents a holistic assessment of the
models.

2.4.1 General model characteristics

Although general model characteristics are not considered to be flexibility
options, they influence the representation of those options nonetheless.
In this research, as mentioned above, the general model characteristics
under evaluation are spatial and temporal scopes, temporal resolution,
decision-making, social factors and probabilistic aspects.

Figure 2.3 shows how many models cover each spatial and temporal scope
and resolution. The upper left plot shows that most models cover all spatial
scopes. In approximately half of all models examined, a local, regional or
international scope is usually used. It is striking that the national scope is
usually used in almost 80 % of the models.

Other spatial scopes are possible or predefined by the model in nearly 50 %
of cases. These scopes are based on the power grid levels, for example, or
the area of a medium-voltage grid. Some of the models also allow for a
continental or an arbitrary scope.

The upper right plot shows how many models cover each temporal scope.
A period between days and years can be simulated in all the models under
examination. This scenario period is usually used in more than 90 % of the
models. Fewer models are able to simulate short-time scales for periods
of less than a few days. Approximately 25 % of the models allow for the
application in another temporal scope. In most of these models, the input
data determine the temporal scope.

The bottom plot illustrates how many models cover each temporal resolu-
tion. Hourly resolution is the most common resolution in approximately
80 % of the models making it the most widely used resolution. Resolutions
larger or smaller than one hour are usually used by around 30 % of the
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Figure 2.3: Representation of geographical scope (upper left), temporal scope
(upper right) and temporal resolution (bottom)

models. In addition, a resolution of more than one hour or less than one
hour is possible in a further 30 % of models.

Regarding decision-making processes, 80 % of the models can make de-
cisions according to perfect foresight. Other decision-making processes
such as the rolling horizon and the agent-based process are represented
less frequently, in approximately 35 % and 15 % of the models. Detailed
information is depicted in the Appendix in Figure A.1.

A probabilistic behaviour is implemented in less than 25 % of the models
under investigation. Those models that are able to represent probabilis-
tic behaviour often use Monte Carlo analysis, as well as other methods.
Detailed information is depicted in the Appendix in Figure A.1.

Just over 20 % of the models include social factors. These factors refer mainly
to economic parameters, such as taxes and costs, or user preferences. The
questionnaire did not ask which social factors are mapped in which way
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Figure 2.4: Representation of flexibility categories

and to what extent. Nevertheless, the results reveal that social factors are not
implemented in most models and are therefore underrepresented.

2.4.2 Flexibility categories

Figure 2.4 illustrates how well, based on our defined parameters and level
of potential detail, each flexibility category is represented within the models
under examination. The figure reveals that, on average, the flexibility of
sector coupling is the category for which most models score in many of the
questioned aspects. The majority of models reach a level of representation
exceeding 65 %. Considering that sector coupling is a relatively new field,
this appears remarkable. In the supply category, approximately half of the
models achieve a representation of more than 60 %. On average, demand
and storage are equally well represented. More than half of the models
achieve a degree of representation of more than 50 % in each category. How-
ever, both two categories have a wide range of representation. Furthermore,
the results show that networks tend to be represented less well than the
other categories, which may be because networks are often represented in a
simplified way. The following subsections provide a detailed assessment
of the flexibility categories. In these subsections, with the exception of the
network representing non-temporal flexibility, operational characteristics
comprise four elements: efficiency, ramping, response time and recovery
time. The detailed operational characteristics are listed in Table A.2. The
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reader should be aware that the level of fulfilment for all of these categories
is also dependent on the type and level of questioned aspects. Hence, the
comparison between categories for a specific model only has an informative
value.

Supply

Figure 2.5 gives insights into the representation of the supply side. Most
models are able to represent the majority of supply-side technologies. How-
ever, there are differences in the level of representation in these technologies.
Conventional technologies, such as fossil fuel-based generation and nuclear
power, and dispatchable renewable supply technologies, such as bioenergy
and hydro power (reservoir and run-of-river), can be implemented in 90 %
to 100 % of the models under examination, and are predefined in roughly
half of them. Variable PV, onshore and offshore wind technologies can also
be implemented in almost all the models and are predefined in nearly 60 %
of them. Geothermal, concentrated solar power, fuel cell technologies, and
wave and tidal power are not as well represented in the models. While in
the majority of models it is possible to implement these technologies, less
than a fifth of them have predefined classes. Only EnergyPlan models
dispatchable and variable renewable energy sources with the highest degree
of representation with respect to the considered aspects.

Technology specifications comprise the minimum load of conventional
power plants and curtailed operation as a specification of VRES. The mini-
mum load is implemented in almost 80 % of the models. Curtailed operation
is possible in nearly 50 % of them. Fewer than 40 % of the models enable a
discrete power plant expansion.

The five models with the highest degree of representation (TransiEnt,
Dispa-SET, Calliope, PyPSA, DIETER) are strong in conventional genera-
tion technologies and technology specifications compared to all the other
models. In particular, with regard to technology specifications, all five
models represent ramping, minimum load, and curtailed operation of RES.
However, not only conventional energy sources have predefined classes in
these models; commonly used RES such as bioenergy, hydro energy, photo-
voltaic and wind energy also show high levels of representation.
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Figure 2.5: Representation of supply side technologies (left) and other specifica-
tions (right)

Demand

Figure 2.6 provides an overview of the representation of the demand side.
Although 70 to 85 % of the models are able to represent individual load
sectors such as households, services and industry, only around a quarter
of them have predefined classes of the load sectors under examination.
Households tend to be best represented, followed by the industrial sector
and then the service sector.

Technology specifications include the possibility to determine a maximum
deferrable load (MDL). This deferrable load can either be defined according
to the time of day when the load can be shifted (time-dependent) or ac-
cording to different load types with regard to technologies or load sectors,
such as households, industry and the service sector (type-dependent). A
deferrable load has the highest degree of representation if it can be mapped
in both a time-dependent and type-dependent manner. More than 40 % of
the models are able to define both time-dependent and type-dependent
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Figure 2.6: Representation of demand side technologies (left) and other specifica-
tions (right)

MDL. Around 15 % of the models can only map a time-dependent change
of MDL; no MDL is implemented in further 15 % of the models.

All five models that score the highest in the area of demand based on our
evaluation (Balmorel, region4FLEX, DIETER, Frigg, FlexiGIS) are able to
represent time-dependent and type-dependent deferrable loads. This is an
essential requirement for representing flexible loads in a renewable energy
system. In addition, these five models have predefined classes or methods
for household loads. The service and industry sectors are also predefined
in four of the five models. Also, all five models can map the efficiency of
demand technologies. However, other operational characteristics, such as
ramping, response time and recovery time, are implemented in only three
of the five models. These operational properties are represented by only
three models at the highest complexity level. These three models (backbone,
TransiEnt, Dispa-SET) are not among the five highest-rated models in this
category.
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Figure 2.7: Representation of storage technologies (left) and other specifications
(right)

Storage

Figure 2.7 illustrates the representation of storage technologies and their
characteristics in the various models. Among the storage technologies exam-
ined, capacitors and flywheels are considered to be short-term storage units.
Batteries are categorised under medium-term storage technologies, whereas
PHS and CAES are classified as long-term storage technologies.

Batteries tend to be best represented among all storage technologies related
to the power sector, followed by PHS and CAES. Capacitors and flywheels
are represented less frequently than the other technologies; only TransiEnt

has predefined classes for them.

Technology specifications in storage technologies comprise cycle and calen-
drical ageing, and self-discharge. Almost 80 % of the models do not cover
storage ageing, while more than 15 % take calendrical ageing into account.
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Only TIMES has implemented cycle ageing. Nearly 70 % of the models
consider self-discharge over time.

Storage specifications describe how complex storage units are implemented.
Storage units can either be modelled in a simplified static way or dynami-
cally, e.g. considering a temperature-dependent efficiency or a seasonally
varying storage capacity. Concerning these storage specifications, the re-
sults show that nearly 55 % of the models represent storage units with a
fixed/simplified model, whereas more than 40 % are able to model storage
units dynamically, e.g. with regard to efficiency dependent on temperature
or seasonally varying storage capacity. One model has not implemented
any storage technologies.

Among the five highest-rated models (TransiEnt,PyPSA, Dispa-SET, back-
bone, oemof) in the category of storage, only TransiEnt has predefined
classes or methods for all storage technologies under consideration. Long-
term and medium-term storage technologies can be implemented in the
other four models. Among the five models, short-term storage technologies
are represented the worst. Furthermore, neither calendrical nor cycle age-
ing is implemented in four of the five models. Calendrical ageing is only
specified in oemof.

Network

Figure 2.8 illustrates how network-related technologies are mapped in the
models under examination. Among the grid types, distribution grids are
represented worse than transmission grids. Around 45 % of the models
contain predefined transmission grids. Approximately 25 % of the models
feature predefined classes or methods for distribution grids.

Grid topology includes properties such as automated network extension and
the use of switches. The results reveal that grid extension is implemented
in almost 35 % of the models. Switches are represented the least.

Grid representation refers to the method by which networks are represented
electrically. Networks can be represented by a net transfer capacity or by
power flow in alternating current (AC) networks (AC power flow) or as a
direct current (DC) power flow approximation. DC power flow and transfer
capacity can be used in less than 60 % and 45 % of the models, respectively.
AC power flow is only represented in less than 40 % of the models.
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Figure 2.8: Representation of network side technologies (left) and other specifica-
tions (right)

Almost 55 % of the models enable the modelling of the import and export
of power using a simplified method. Furthermore, the representation of
import and export is flow-based in 45 % of the models. Approximately
10 % of these models facilitate the modelling of import and export using
a simplified or a flow-based method. Less than 10 % of the models do not
include import/export modelling. Just under 20 % of the models are based
on other import/export methods; these refer, for instance, to representation
by means of cost functions.

Ancillary services such as spinning reserve, balancing energy, sheddable
loads, feed-in management, and curtailment of variable renewable energy
technologies are represented in 20 % to 45 % of the models. In contrast,
re-dispatch and power factor correction are represented in less than 20 %
of them. All models still have room for improvement regarding ancillary
services, e.g. none of them consider black start capability.
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Figure 2.9: Representation of sector coupling technologies (left) and other speci-
fications (right)

TransiEnt has the largest variety of ancillary services (spinning reserve,
balancing energy, sheddable loads, feed-in management, power factor cor-
rection, and curtailment). The five highest-rated models achieve a significant
degree of representation because most of them cover both distribution and
transmission grids, and are able to represent both AC and DC power
flow.

Sector coupling

Sector coupling is a cross-sectional issue in relation to the other categories.
Figure 2.9 shows that sector coupling is generally well represented, par-
ticularly given that it is a relatively new area, especially when it comes
to representing sector coupling supply, demand, and storage technolo-
gies.

Sector-coupled supply includes only combined heat and power (CHP) be-
cause it is capable of producing both heat and electricity. While fuel cells are
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also capable of using waste heat, their primary goal is to generate electricity.
As such, they have already been discussed in Section 2.4.2. Most models are
capable of representing CHP. This corresponds to the previous conclusion
that supply-side technologies are generally well represented.

Demand-side technologies include power-to-gas, heat pumps, and EV.
Despite the fact that these are relatively new technologies, a considerable
number of models are capable of representing them. In particular, the three
best-rated models can represent sector-coupled demand at the highest level
of complexity, as defined in the evaluation scheme employed.

Sector coupling storage technologies include fuels, heat storage, and vehicle-
to-grid (V2G). A large number of models are able to represent one or more
of these storage technologies.

Sector representation refers to how well heat and transport sectors are
represented in terms of exogenous aggregated demand or endogenous
disaggregated choices for demand or technologies. The results reveal that
the heat sector is better covered than the mobility sector, which is neglected
in almost 60 % of the models. In contrast, around 40 % of the models do not
cover the heat sector.

Technology specifications include how technologies are implemented. These
specifications, corresponding to those mentioned above under supply, de-
mand and storage, include discrete expansion, curtailment for supply tech-
nologies, ageing for storage technologies and other specifications. These
specifications do not reach the degree of representation that the technolo-
gies themselves achieve. Furthermore, no model meets the highest degree
of representation in this area.

Among the five highest-scoring models in the sector coupling domain,
Dispa-SET, PyPSA and region4FLEX feature the highest level of modelling
details in representing sector coupling technologies. EnergyPlan and
EnergyScope also achieve the highest level of modelling details in sector
coupling technologies.

2.4.3 Holistic approach

As mentioned in Section 2.2, flexibility is becoming crucial when it comes
to planning and designing future energy supply structures. In this context,
it is important not only to focus on a few flexibility options, but also to
consider different options of supply, demand, storage, sector coupling,
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Figure 2.10: Holistic representation of all flexibility categories

and network. The following section shows the extent to which the models
surveyed models represent a holistic approach to flexibility.

Figure 2.10 provides an overview of the ranking of the models under exami-
nation in the relevant categories, as defined in our evaluation scheme. Many
models are powerful in individual categories but perform only moderately
in others. TansiEnt, for instance, appears to be the most potent model.
This model has a very high degree of representation with regard to supply
and storage, while many other models perform better when it comes to
demand. EMMA, for instance, achieves a high level of representation in the
demand category compared to other categories. The same applies to eGo,
pandapower and GridCal, which exhibit an above-average performance in
the network, but fare less well in the other categories. In the field of sector
coupling, some models consider a wide range of sector coupling aspects.
Other models, on the other hand, focus specifically on the electricity sector
and only rarely consider elements related to the heating and transport
sector. Many models map individual categories very well. Among the mod-
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els that achieve a high degree of representation in a certain category, the
representation is often over 80 %.

The results summarised in the previous section also show that many opera-
tional characteristics are not well represented. This may be because many
models use perfect foresight, and therefore several operational parameters,
such as ramp rate or response time, are neglected. Since the economic and
social drivers were not specifically part of the questionnaire, it is difficult to
draw conclusions on these aspects. It appears, however, that models such
as EMMA and Balmorel address economic drivers, given that they are
market models. Economic aspects are implicitly included in other models
via price structures or investment decisions.

However, the results also reveal that a wide range of models exists that are
strong in specific areas and weaker in others, depending on the focus of the
model. When selecting a model to answer a specific research question, the
strengths and weaknesses of each model should be considered.

The question remains as to the extent to which the models feature a holistic
approach to flexibility options. To this end, a threshold value was chosen
that is slightly above the highest median of the individual categories. The
sector coupling category exhibits the highest median (almost 70 %). For
this reason, all models with a representation above 70 % in a particular
category were examined and depicted in Table 2.4. Models that were unable
to achieve more than 70 % representation in any category were excluded
from the representation. This fact should not cause users to assume that
these models are generally less convenient to use. These models probably
focus on aspects that were not explicitly included in the questionnaire,
meaning that they may address research questions that do not focus on
flexibility. The following conclusions are therefore closely connected to the
aspects of the questionnaire and the evaluation criteria.

Table 2.4 shows that sector coupling appears to be exceptionally well cov-
ered based on our evaluation criteria. Ten models achieve a representation
level of 70 % or more. The comparatively large number of models may
suggest that the open energy community is consciously promoting the
relatively new topic of sector coupling. Note that this conclusion is drawn
from a power sector perspective. Detailed aspects of the mobility and heat
sector are not the subject of this examination. A specific evaluation of heat
and mobility sector aspects may therefore lead to other conclusions. In
contrast, there are only two models in the storage category and only one in
the network category with a representation exceeding 70 %.
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Table 2.4: Representation of holistic approach within models with more than 70%
of representation in any category

Model Supply Demand Storage Network Sector
coupling

TransiEnt 95 % 93 % 77 %
Dispa-Set 80 % 82 %
Calliope 79 % 74 %
PyPSA 79 % 71 % 85 %
DIETER 76 % 82 %
backbone 75 %
Balmorel 71 % 86 % 70 %
region4FLEX 82 % 84 %
Frigg 80 % 84 %
FlexiGIS 71 %
eGo 85 %
oemof 70 %
EnergyPLAN 70 %

To address specific research questions regarding one individual category,
there is probably at least one appropriate model. However, a holistic ap-
proach, which shows flexibility across all categories considered with a high
degree of representation, cannot be deduced from the results. Three models
(TransiEnt, PyPSA, Balmorel) cover three of the five categories with a
high degree of representation. Not one model achieves a high degree of
representation in four or the five categories.

To answer specific research questions with a holistic approach of flexibility,
different models can be combined to ensure broad coverage of the categories.
Thus, it would be possible to use mainly one model with a comprehensive
range covering almost all categories. In addition, one or two models could
be used that are strong in the specific categories covered inadequately by
the other model. One example of coupled models is eGo, which uses PyPSA
to perform load flow calculations.
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Moreover, many models will be expanded in the future by components that
also affect flexibility. eGo, for example, will be upgraded with controlled
charging for electric vehicles. The representation of power-to-X and the
transport sector is likely to be improved in Balmorel. oemof will address
the heat sector more comprehensively by optimising and simulating district
heating and absorption heat pumps.

Regarding grid aspects, it is likely that TransiEnt will integrate a module
that allows the investigation of voltage stability. Furthermore, a complete
AC/DC simulation with additional components and harmonic analysis will
be implemented in GridCal. Power flow calculations in pandapower will
be extended to allow the consideration of asymmetric grid situations.

Demand response will be enabled by model coupling in Frigg, and auto-
mated model coupling will be implemented in Dispa-SET. Furthermore,
FlexiGIS will integrate socio-economic aspects and an urban policy per-
spective.

The results suggest that many categories are mapped very well by individ-
ual models. However, a holistic approach to flexibility across all categories
appears to be inadequately represented as for now. It may be advantageous
to couple several models in this context. Moreover, flexibility aspects will
be added to many models in the future.

2.5 discussion and limitations

Our analysis revealed different levels of representation of technical flexibility
options among the models surveyed. In this section, we critically reflect on
our findings and discuss the limitations of this study.

First, the questionnaire itself contained certain biases due to the survey
designers’ understanding and interpretation of flexibility and modelling
tools. We strove to minimise this bias by scanning the existing literature
for model parameters and cross-checking the questionnaire with modeling
experts before distributing it. To counteract deviations that may occur never-
theless due to different interpretations of the survey questions, we checked
all of the completed questionnaires for consistency, and enquired and dis-
cussed matters with the developers if answers were unclear or suggested
that the respondent may have had a different understanding of specific
questions. With our methodology, we follow the line of argumentation
of [56], where the authors recommend a dialogue with model developers
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for model overviews and validation purposes. The approach is also in line
with [44] who sent a survey to model developers and [48] who validated
their outcomes with the developers of most of the investigated models. A
case study to evaluate how well our results reflect the actual modelling
capabilities would be a valuable extension of our work.

Second, the scope of the questionnaire is limited. As stated in the back-
ground section, flexibility is a broad field covering numerous aspects and
dimensions. It is quite a challenge to cover all aspects and dimensions in
detail, while ensuring that the questionnaire does not become too long,
affecting the response rate. To this end, the primary focus of this study was
narrowed down to the technical representation of flexibility options in the
models under examination, focusing on the power sector. Some aspects of
system operations are covered by the decision-making process and prob-
abilistic aspects. The social drivers are touched by behavioural and social
aspects. A more detailed examination of the system operations and the
economic and social drivers would be interesting, but exceeds the scope of
this work and is left to further research.

Finally, in spite of all attempts to reach out to a wide variety of open source
models, it was not possible to capture all existing models. However, a
sufficient quantity and variety of models enabling a good overview was
ensured by disseminating the questionnaire via the website and mailing
list of the openmod initiatives and reaching out to specific interesting
models by sending additional emails. While the models surveyed do not
therefore necessarily represent a perfect sample of the global open source
ESM landscape, the results identify specific trends nonetheless.

We discuss these trends and the reasons for different levels of representation
in ESMs along the five flexibility options. We are aware that the level of
representation obtained is highly dependent on the parameters chosen
and their weighting. In this study, they were chosen such that flexibility
options could ideally be represented holistically. However, some parameters
may not be of interest to several questions on the topic of flexibility, while
others may weigh more heavily than represented in the current evaluation.
We therefore provide an open source version of the algorithm4, which
enables users to adjust the weighting as required and provides the level of
representation of all models. The tool is intended to help scientists choose
the right tool for their specific research question.

4 Open ESM Flexibility Evaluation Tool: https://github.com/rl-institut/OpFEl

https://github.com/rl-institut/OpFEl
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In this study, sector coupling exhibited the highest rate of representation
in all ESMs surveyed. This is quite surprising because the flexibility of
sector coupling is a relatively new approach [56], [57]. However, it must
be noted that our study only examined sector coupling technologies from
the perspective of the power system. The detailed evaluation of the repre-
sentation of sector-specific aspects, such as their transport structure, was
therefore excluded. As a result, all statements on the level of representation
apply only to sector coupling technologies in power systems. Among these,
many ESMs already include sector-coupling technologies such as PtG and
heat pumps (HPs). These technologies enable electricity to be converted to
different gas types and then used for heating, transport, industrial processes
or reconversion to electricity. The existing literature shows an emerging
trend in the investigation of cross-sectoral synergies [56], which explains the
detailed mapping of sector coupling technologies. Since these technologies
are an important long-term storage solution for high-share RE systems, they
are included in many ESMs. This is also underlined by studies on high-level
or 100 % RE that demonstrate the importance of PtG [57]–[59]. Nonetheless,
a proper representation of the heat and transport sector in ESMs was often
found to be missing. As such, there is room for improvement when it comes
to comprehensively simulating sector-coupled flexibility [49], including be-
havioural aspects [60], [61] and demand-side management in other sectors
than electricity [49].

Supply-side and demand-side flexibility options have the second and third
highest representation. Providing flexibility via different supply technolo-
gies is the most established form of flexibility in power systems. As a
result, almost all models include conventional and RE as flexibility options,
but have limitations with regard to the operational constraints of these
options, even though it is possible to implement most constraints in the
most common temporal scope of hourly increments. Other studies also
found that certain operational aspects were underrepresented [49], [50].
Demand-side flexibility, such as shifting the load of household appliances,
the service sector and industrial loads, is enabled in most ESMs. The flexi-
bility potential lies – as is the case with supply – within the range of hourly
timesteps.

We observed a limited representation of storage flexibility options in the
ESMs surveyed. While primarily medium-term and long-term storage op-
tions such as batteries and pumped hydro storage are included in almost
all models, short-term storage such as capacitors and flywheels is missing
in most cases. This result suggests that modelling the short-term storage



2.6 conclusion 47

behaviour and ageing of battery systems is a complex field and beyond
the scope of most ESMs that look at long-term scenarios. In [62], for in-
stance, PyPSA is used to compare battery storage and long-term storage
technologies for a year on a European scale. A transient short-term energy
system simulation in TransiEnt using batteries and a natural gas grid as
storage units is described in [63]. A broader overview of energy storage in
long-term system models is provided in [64].

In general, networks are not broadly covered as a flexibility option in any
of the models aside from eGo. Modelling networks and the geographical
flexibility associated with them requires a very detailed set of data and
simulations. For this reason, most ESMs exclude this dimension and neglect
geographical flexibility, with the exception of comparing different regions
connected via transmission grids [57], [65]. Detailed analysis at the medium-
and low-voltage grid level has traditionally been conducted for grid integra-
tion studies [66] or for improving grid operations [67], applying commercial
software such as PowerFactory [68] or Sincal [69]. The emerging field
of including distribution grids in larger-scale energy system models has
been shown to alter the results of long-term scenarios significantly [70]. In
a recent study on the capabilities of energy system models, however, the
representation of distribution grids was also found to be a possible field of
improvement [49].

In summary, the results reveal the background of most models - they were
designed to provide decision support for medium-term to long-term energy
planning.

2.6 conclusion

The importance of flexibility in the design of future energy systems is grow-
ing. Finding the appropriate flexibility option for planners and operators
of power systems is crucial to provide reliable and cost-effective power,
especially in high share VRES systems.

As the first result of our work, we introduced a new framework that captures
the different characteristics of flexibility options. First, we distinguished
between the geographical and temporal dimension. We then introduced as-
pects of system operation and presented economic and social drivers, which
influence the utilisation of technical flexibility. Finally, we presented five dif-
ferent technological flexibility categories: network, supply, demand, storage
and sector coupling and their operational characteristics. This framework
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can be used to describe, develop and improve flexibility options. We have
applied the framework to assess the representation of flexibility options in
ESM in an effort to support future energy modelling tasks by finding the
most appropriate tool for the question at hand as well as identifying future
research and development needs for new tools.

The results show that the geographical dimension is adequately represented
among the models analysed, generally covering all geographical scopes
from local to international. With regard to the temporal dimension, most
models focus on long-term assessments and planning using hourly incre-
ments as simulation time steps. As shorter timescales become increasingly
relevant as the share of VRES, we suggest placing greater emphasis on
shorter timescales in future model development.

We further analysed the technical flexibility categories - supply, demand,
storage, network and sector- coupling, including their operational charac-
teristics. All technical flexibility options are well represented in at least one
of the models. Based on our analysis and assessment criteria, we recom-
mend to apply TransiEnt for modelling supply-side and storage flexibility,
while Balmorel scores the highest for demand-side flexibility. We found
that eGo represents network flexibility most comprehensively. However,
network-type flexibility in particular is still covered in limited detail in most
models. Dispa-SET exhibits the highest representation of sector-coupling
features for power system flexibility. Most models still cover storage and
network-type flexibility in limited detail. Thus, this needs to be prioritized
in the process of refining and improving models. Another possibility to
overcome certain weaknesses of individual models is to facilitate a soft
coupling of different models. This would allow for a holistic evaluation of
flexibility and energy systems based on VRES.

Flexibility depends not only on technical parameters of flexibility options,
but also on the system operations. Aspects addressing system operation
parameters are generally represented less strongly than those covering
technical parameters. Most models use perfect foresight as the basis for
investment and dispatch decisions and did not include probabilistic and
behavioural aspects. Perfect foresight is appropriate for managing foreseen
changes in either supply or demand, but less so for unforeseen changes.
We therefore recommend using probabilistic approaches and including
behavioural aspects to ensure that system operation flexibility tackling
unforeseeable changes can also be assessed.
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In summary, the open energy modelling landscape provides a broad set
of solutions for modelling flexibility options in power systems. The appro-
priate selection depends on the research task at hand. Having said that,
most questions can be addressed using existing models. Our open source
version of the evaluation algorithm may help scientists find the appro-
priate models for their specific research purposes. Future work in model
development should focus on coupling models and increasing the temporal
resolution.
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M O D E L L I N G O F D E C E N T R A L I S E D F L E X I B I L I T Y
O P T I O N S

This PhD research investigates the role of decentralised flexibility options
(DFOs) in future power systems with high shares of variable renewable
energy sources (VRES) and sector coupling technologies. The focus thereby
lies on flexibility from electric vehicles (EVs), heat pumps (HPs) and battery
energy storage systems (BESS). These are larger consumption units within
households that display both high energy consumption and power values
and therefore offer a higher flexibility potential than smaller devices.

The chapter is structured as follows. Section 3.1 introduces the choice and
methods of an existing model for distribution grids (DGs). Sections 3.2, 3.3
and 3.4 introduce the relevant data and model formulations for EVs, HPs
and BESS that were developed and used in this thesis1.

3.1 distribution grids

The previous chapter found that the open-source modelling landscape
covers diverse flexibility options. To use existing work, we apply an adapted
version of the algorithm introduced in Section 2.3.3 to choose the most
suitable model for further investigations. This model is then expanded with
missing model formulations.

The first part of the PhD focuses on the interplay of decentralised flexibility
options and the grid. We focus on the medium voltage (MV) and low volt-
age (LV) as many new technologies are installed within these voltage levels.
Therefore, the chosen model should be able to adequately represent DGs
on these voltage levels and decentralised flexibility options. Section 3.1.1
describes the choice of an existing model to adequately represent DGs. Sec-
tions 3.1.2, 3.1.3 and 3.1.4 describe relevant methods of the model, namely
the identification of grid issues and the modelling of grid reinforcement
and curtailment in the chosen tool.

1 The code for sizing (and operations) of the DFOs is published open-source under
https://github.com/AnyaHe/DFOs.
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52 modelling of decentralised flexibility options

3.1.1 Model Choice

We want to make use of existing models for the representation of DGs
using the previously described decision algorithm. To be able to capture
the varying importance of certain technologies and their representation, we
use a Likert-scale [71] ranging from one to five (1: very low importance,
2: low importance, 3: moderate importance, 4: high importance, 5: very
high importance) to weigh the representation of different parameters in
the model. We thereby only evaluate aspects that are relevant for the
interplay of decentralised flexibility options, namely EVs, HPs and BESS,
and DGs.

Evaluated Parameters

Table 3.1 summarises the investigated parameters, the chosen weights and
ratings. As DGs are our main focus, their representation and the possibility
to perform alternating current (AC) power flow (PF) calculations are rated
with very high importance. Network extension as the geographic flexibility
option is rated as highly important, and all relevant temporal flexibility
options (EVs, HPs and BESS) as slightly less important, i.e. of moderate
importance, as they are easier to implement than grid related aspects.

The represented geographic and temporal scope and temporal resolution
are also weighted as moderately important. The relevant geographical
scope is the local scale as we focus on lower grid levels. The temporal
resolution should enable calculations with 15 min or hourly time steps for
temporal scopes of days to one year, i.e. intermediate and long durations.
The representation of vehicle-to-grid (V2G) and thermal energy storage
(TES) for the increased flexibility of EVs and HPs is rated as nice-to-have
but of low importance. Similarly, the representation of VRES would be
nice but should also be easy to integrate, so it is rated of low importance.
The last category of very low importance comprises the more detailed
representations of temporal flexibility options and the modelling language.
These factors make an application easier or more accurate but are not
necessarily required.
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Table 3.1: Relevant parameters and their weights and ratings (in brackets) for model choice. Weights range from one to five
(1: very low importance, 2: low importance, 3: moderate importance, 4: high importance, 5: very high importance)
and ratings from zero to one (0: not represented at all, 1: full representation).

Category Content Rating

General Geographic scope, temporal scope, temporal resolu-
tion (weight: 3)

All relevant possibilities equally weighted
(rating: 1/n)

Modelling language python (weight: 1) yes (rating: 1) \ no (rating: 0)

Network Technologies Distribution grid (weight: 5), network
extension (weight: 4)

Predefined (rating: 1) \ possible (rating: 0.5)

Specifications Grid representation ACPF (weight: 5) yes (rating: 1) \ no (rating: 0)

Technologies EVs, HPs (weight: 3), V2G, TES
(weight: 2)

Predefined (rating: 1) \ possible (rating: 0.5)
Sector
Coupling Specifications Technology specifications, operational

characteristics (weight: 1)
Individual rating for technology specifica-
tions

Storage Technologies Batteries (weight: 3) Predefined (rating: 1) \ possible (rating: 0.5)

Specifications Storage implementation (weight: 1) Dynamic (rating: 1) \ static (rating: 0.8)

Technologies PV, wind (weight: 2) Predefined (rating: 1) \ possible (rating: 0.5)
Supply

Specifications Curtailed operation (weight: 1) yes (rating: 1) \ no (rating: 0)
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Rating of Models

We perform the introduced evaluation algorithm with the subset of relevant
parameters to find the most suitable model. Figure 3.1 shows the result-
ing ranking of all investigated models. The highest ranked model is eGo

followed by PyPSA and TransiENT. All three models show a very high rep-
resentation of the relevant technologies, with PyPSA being slightly weaker
in network representation and eGo and TransiENT weaker in the represen-
tation of sector coupling technologies. For the other specifications, all three
models show the lowest values for detailed specifications of sector coupling
technologies, where again PyPSA shows the strongest representation out of
the three.

It is important to mention that the final ranking is extremely sensitive
towards the chosen parameters and ratings. Even small changes in the
weights can lead to a different order of the models since some show very
similar overall ratings. However, the three models mentioned always rank
the highest as they broadly cover the relevant parameters. Therefore, we
base the final choice on these three models and consider additional relevant
factors that were only partly covered in the survey. These are:

interoperability : As flexibility has different dimensions and is relevant
on various geographical and temporal scales, performing a model
coupling or switching between different models might be necessary.

data availability : While most models and frameworks work indepen-
dently from input data and can be fed with several different data
sources, it is advantageous if the model has already been applied to a
specific use case. This way, relevant methods and intersections will
already be available and do not need to be newly implemented.

In terms of interoperability, eGo and PyPSA outperform TransiEnt as
they are implemented using python, like 54,2 % of all investigated models.
TransiEnt, on the other hand, is the only model using Modelica as a
language. Furthermore, eGo uses functionalities of PyPSA. Therefore, the
data formats are very similar, and both models can easily be coupled.

On the other hand, the data availability for the given use case is best for eGo.
While both PyPSA and TransiEnt are mainly intended for an application
on the transmission level (e.g. [72], [73]), eGo is designed for all voltage
levels, ranging from the extra high voltage to the LV [74]. eDisGo, a sub-
module of eGo was specifically designed for DG modelling in the MV and
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Figure 3.1: Representation of investigated parameters divided into technology
representation (left) and other specifications (right)

LV [75]. It is directly coupled with ding0, a tool which creates synthetic
MV-LV-grids based on geographic information system (GIS) data for entire
Germany [76].

With these additional criteria, we choose eDisGo, the sub-model for DGs
of eGo, for our further investigations. During this PhD, the model was
extended with an optimal power flow (OPF) formulation for the grid-
optimised operation of EVs, HPs and BESS. The required model extensions
were implemented in close collaboration with the modelling team and the
eGon-project [77]. Figure 3.2 displays the development of the representation
of relevant parameters in eDisGo in the course of this thesis. While most
relevant aspects were already covered to a large extent at the beginning of
the thesis (eDisGo), improvements are visible in the representation of sector
coupling technologies and storage in the current version (eDisGo_new).
While not all of these improvements were implemented during the thesis,
some important aspects were integrated, like the modelling of EVs and HPs.
The demand from these sector coupling technologies is still predetermined
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Figure 3.2: Development of representation of investigated parameters divided
into technology representation (left) and other specifications (right)

and treated as an exogenous parameter in the model, which is why it still
does not reach the highest score in the other specifications of this category.
As mentioned, many of the relevant aspects were covered in the model
at the start of the thesis, which is why the model was chosen in the first
place. The following section explains the most important previously existing
methods used in this thesis.

3.1.2 Grid Issues

The chosen open-source tool eDisGo allows us to analyse DGs by running
an AC PF (using functionalities of PyPSA [78]) and comparing the resulting
branch currents and bus voltages to grid-level- and case-specific voltage
and loading bounds [75]. The cases that are differentiated are the load and
feed-in cases, depending on whether the load exceeds the feed-in in the
residual load of the grid or vice versa. If any of these bounds are violated,
these violations are detected as grid issues. They can be resolved using
grid reinforcement or curtailment measures (explained in Sections 3.1.3
and 3.1.4). The grid issues that are detected are voltage and overloading
issues.

Our investigations use a time series based approach, meaning that load and
feed-in time series are integrated into the grids and an AC PF is conducted
for every time step. The utilised active power time series are described
in Section 3.1.5, where the investigated grids are introduced. The reactive
power is modelled with a constant technology-specific cos(ϕ), summarised
in Tab. 3.3.
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Table 3.3: Standard values for cos(ϕ) used in eDisGo

Load Heat Pumps Charging Points Storage Units Generation

MV 0.9 1.0 1.0 0.9 0.9
LV 0.95 1.0 1.0 0.95 0.95

Voltage Issues

The voltage has to stay within grid-level- and case-specific voltage bounds [75]
that are visualised in Fig. 3.3. The values are chosen following technical
standards and guidelines [79]–[81]. In the case of voltage drops, the al-
lowed voltage deviation is set to 0.015 p.u. in the MV, 0.02 p.u. for MV-LV-
transformers and 0.065 p.u. in the LV. In the case of voltage increase, the
allowed voltage deviation equals 0.05 p.u. in the MV, 0.015 p.u. for MV-LV-
transformers and 0.035 p.u. in the LV. In both cases, the grid-level-specific
bounds add up to a total deviation of 0.10 p.u, i.e. 10 % of the nominal
voltage, thus fulfilling DIN EN 50160 [79].

Component Overloading

Regarding component loading, the thermal limit of lines and transformers
should not be exceeded. The MV furthermore has to be operated (n-1)-
secure, meaning that the system still needs to be operated safely within
the operational boundaries in case of the contingency of any of the grid
components [82].

For the component loading (summarised in Tab. 3.4), we therefore differen-
tiate two simulation setups: the normal operation and contingency case. For
normal operation, the maximum allowed loading is 100 % of the thermal
component limit in all investigated voltage levels and cases.

For the contingency case, we use voltage level and case-specific standard
values provided by eDisGo [75]. It follows the approach introduced in [83],
where loading constraints are defined for the different voltage levels and
depend on the grid residual load. If the grid residual load is positive, i.e.
the load exceeds the feed-in, this is defined as the load case. If the grid
residual load is negative, on the other hand, the situation is defined as
feed-in case. The LV does not have to be operated (n-1)-secure. The allowed
maximum component loading of LV lines and for MV-LV-transformers is
therefore 100 % of the thermal limit for both load and feed-in case. In the
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Table 3.4: Loading constraints for different grid levels in percent of thermal limit
of the components

Normal Operation
Case HV/MV MV MV/LV LV
Feed-in/load 100% 100% 100% 100%

Contingency Case
Case HV/MV MV MV/LV LV
Feed-in 100% 100% 100% 100%
Load 50% 50% 100% 100%

MV and for high voltage (HV)-MV-transformers, on the other hand, there is
a differentiation between the load and feed-in case because of (n-1)-security.
In the load case, the allowed component loading for HV-MV-transformers
and MV-lines in open ring topologies is 50 % of the thermal limit to be able
to compensate for contingencies. The distribution system operator (DSO)
can disconnect the feed-in from the grid in case of a fault or overloading [80].
Therefore, the allowed component loading in the feed-in case is equal to
100 % of the thermal limit.

3.1.3 Grid Reinforcement

The chosen open-source tool eDisGo [75] allows us to determine the nec-
essary grid reinforcement and resulting costs. The tool iteratively installs
parallel components or splits single feeders until all occurring voltage and
overloading issues are resolved.

The basic principle of this functionality is displayed in Fig. 3.4. In case of
voltage or overloading issues at transformer stations, the transformer is
either replaced or parallel standard transformers are installed. If a line is
overloaded, the line is either replaced or parallel standard lines are added
until the overloading is solved. In case of voltage issues within a feeder, a
feeder separation is performed, where the feeder is split after two-thirds of
the feeder length. For a more detailed description of the methodology of
this tool, we refer to [74].

Standard components according to [83] are used for the reinforcement mea-
sures. These are summarised in Tab. 3.5. The resulting costs are calculated
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Figure 3.4: Heuristics for grid reinforcement measures implemented in eDisGo

(own representation based on [75])

with the help of standard values for equipment changes, summarised in
Tab. 3.6. The costs for cables without earthworks are adopted from [84], and
all other values stem from [85]. The population density differentiates the
region type (rural, urban). Areas with a population density ≤ 500/km2

are classified as rural, and areas with a population density > 500/km2 as
urban [75].

Table 3.5: Standard components for grid reinforcement measures used in eDisGo

MV Lines HV/MV-
Transformer LV lines MV/LV-

Transformer

NA2XS2Y 3x1x185 RM/25
1

NA2XS2Y 3x1x240
2 40 MVA NAYY 4x1x150 630 kVA

1 For 10 kV MV grids; 2 For 20 kV MV grids

Table 3.6: Standard costs for grid reinforcement measures used in eDisGo

Voltage
level Cable Cable incl. earth-

works - rural
Cable incl. earth-

works - urban
Trans-
former

MV 20 t€/km 80 t€/km 140 t€/km 1 M€
LV 9 t€/km 60 t€/km 100 t€/km 10 t€

3.1.4 Curtailment

While grid reinforcement is the traditional way of dealing with grid issues
and therefore a good measure of comparison, grid reinforcement needs
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depend only on the highest occurring grid issue per component, i.e. very
short periods. Some could be solved with relatively small interventions,
like using storage to shift feed-in or demand. Therefore, we assess the cur-
tailment needs for load and feed-in to solve arising grid issues as a second
measure of comparison. It allows a more detailed investigation of when, to
what extent, and how long the DSO would have to enact countermeasures
to solve the arising grid issues. The curtailment thereby measures the need
for temporal flexibility instead of the increase of geographic flexibility by
grid reinforcement. Temporal flexibility measures like the utilisation of
storage or load shifting will likely become more important in future active
distribution grids.

To calculate the necessary curtailment of load and feed-in to solve aris-
ing grid issues, we use the methodology developed in [23]. The demand
respectively feed-in is iteratively reduced in steps of 1 %, and after each
iteration, it is rechecked for grid issues as described in Section 3.1.2. Since
the curtailment of load and feed-in in lower grid levels can alleviate grid
issues in higher grid levels, the grid issues are solved from the LV to the
MV: first in the LV, second at MV-LV transformers and lastly in the MV.
Similarly, the grid issues farthest away from the transformer station are
solved first within one voltage level (i.e. in the LV or MV), successively
moving closer to the station. The reason is that solving issues further away
from the station can alleviate the other grid issues.

3.1.5 Investigated Grids

Distribution grids can vary greatly depending on local conditions. The
influence of increasing penetrations of DFOs will likely also vary depending
on the grid type. We therefore investigate different types of grids to capture
the influence of DFOs, namely load-, PV- and wind-dominated grids. In
the following, we introduce the representative grid topologies that serve as
the base of our investigations. Thereby, two base scenarios are simulated:
the status quo and a future scenario for 2035, which shows higher levels of
DFOs.

Grid Topologies

We use synthetic medium- and low-voltage DGs provided by the open-
source tool ding0 [76]. It provides a data basis of 3608 MV-DGs with
underlying LV-grids for entire Germany. This work focuses on the simul-
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taneous integration of DFOs and renewable energy sources (RES) with
a specific focus on the influence of different technological compositions
of DGs. As the future RES penetration and influence on the grids are ex-
pected to be higher in suburban and rural grids [86], we only consider
these types of grids. In previous work, the grids were clustered using the
k-means-algorithm to obtain 15 representative grids, further divided into
four categories: load-, PV-, wind-dominated grids and other [23]. For this
work, the two grids with the most dominant characteristics classified as
load-, PV- and wind-dominated while representing sufficiently high num-
bers of grids are chosen for the investigations. These six typical grids and
the represented grids are displayed in Fig. 3.5.

Wind-1
Wind-2
PV-1
PV-2
Load-1
Load-2
Not represented

Load-1

PV-1

Wind-1

Wind-2

Load-2
PV-2

Figure 3.5: Representative grid topologies and represented grids on a map of
Germany.
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The provided grid topologies include lines and transformers as well as
various loads and generators connected to specific buses. The MV-buses are
georeferenced and obtained with the help of a routing algorithm. Typical
LV-grids are connected to the MV/LV-transformers. The connected loads
are subdivided into agricultural, industrial, residential and retail loads.

Following [87], time series data of the demandlib [88] is used for the load
and time series data for the weather year 2011 extracted from the Open
Energy Platform (OEP) [53] for solar and wind generation. Dispatchable
renewable energy sources (dRES) are assumed to produce at constant
capacity factors, namely 0.57 for biomass and 0.41 for hydropower plants.
These values are obtained by dividing the total energy produced in 2019

by the total installed capacity in that year. All time series data are obtained
in a resolution of 15 minutes. In some of the following investigations, the
temporal resolution is decreased to one hour to limit the computational
complexity.

Status Quo Grids

We use the ding0-grids and update them to 2018 installed capacities for
the status quo. Fig. 3.6 shows the installed capacities of generation units
and peak loads of residential and other loads. The status quo grids are
the basis for most grid investigations. However, increasing penetrations
of distributed energy resources (DERs) are integrated and connected to
residential loads to study their effect on different distribution grids.

2035 Grids

One specific setup we investigate is the status of the grids for the target
year 2035. For this scenario, we use data from the eGo 100-scenario of the
open_eGo-project [87] and predictions provided by the German network
development plan (NDP) [17]. Fig. 3.7 visualises the resulting peak load of
the conventional load including HPs and installed capacities of EV charg-
ing stations as well as generation, differentiated into wind, PV and other
generation (i.e. dispatchable renewable energy plants), in the considered
grids. Table 3.7 additionally contains structural parameters and private and
public charging demands within the grids.

The eGo 100-scenario gives information on generator capacities and con-
ventional load as well as the spatial distribution and assignment to the
different voltage levels. The eGo 100-scenario only considers an expansion
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Figure 3.6: Considered grids in status quo with peak load of residential and other
conventional load and installed capacities of generation technologies.
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Figure 3.7: Considered grids for 2035 with peak load of conventional load (in-
cluding HPs) and installed capacities of EV charging points and
generation technologies.
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of renewables, however, and does not take sector coupling into account. We
therefore expand it by EVs and HPs as these are the most important sector
coupling elements for the MV and LV. For the number and total annual
consumption of HPs as well as the number of EVs, the NEP C 2035-scenario
of the German NDP [17] serves as input. The demand profile for HPs is
adopted from [89] if not optimised2. As HPs are assumed to be predom-
inantly installed in households, the demand is allocated to households
proportionally to the annual electricity demand of the respective household
and added to its load profile. The total number of EVs for Germany are
regionalised and assigned to the DGs based on current statistics on regis-
tered vehicles [90]. To incorporate their demand into the grids, charging
stations are added as new loads. The sizing of these charging stations and
the modelling of EV driving and charging patterns is further detailed in
Section 3.2.

3.1.6 Critical Reflection

Here, input data and modelling assumptions, as well as their potential in-
fluence on the results, are discussed. Furthermore, areas for future research
are pointed out.

Input Data

Due to the lack of openly available distribution grid data for entire Germany,
we use synthetic data for the distribution grids, provided by ding0 [76].
While these are based on GIS data and follow current grid planning prin-
ciples, they will still differ from real-world distribution grids since these
also depend on historical decisions and grid planning principles can differ
based on the DSO [91]. In the original publication, the authors compared
the created data basis with statistical parameters from German distribu-
tion grids and found deviations of +10.3 % for the number of HV/MV-
transformers, -8.2 % for MV/LV-transformers and -2.3 % for the total length
of MV lines [91]. In a master thesis supervised during this PhD, the grids
were compared to real-world distribution grids and SimBench grids based
on visual, structural and mathematical criteria [92]. SimBench is another
source of synthetic grid data which is based on real-world data, i.e. 74

distribution grids for the MV benchmark grids [93], [94].

2 The modelling of HPs in case of optimised operation is explained in the following Section 3.3.



66 modelling of decentralised flexibility options

Table 3.7: Grid topologies and included technologies for the 2035 grids.

Structural grid parameters

Grid ID #feeder #MV-buses #LV-buses #MV-LV-stations

Load-1 29 159 13,812 110

Load-2 30 96 6,514 56

PV-1 11 240 7,992 130

PV-2 18 196 20,275 196

Wind-1 15 419 9,071 179

Wind-2 24 798 11,722 381

Installed generator capacities in [MW]

Grid ID Wind Large PV Small PV Hydro Bio

Load-1 0.0 6.8 16.8 0.0 0.5

Load-2 0.0 13.5 4.5 0.0 0.0

PV-1 8.3 72.2 27.0 0.3 2.4

PV-2 6.3 13.7 47.0 0.8 14.6

Wind-1 138.2 24.6 13.8 0 50.1

Wind-2 125.4 14.9 8.7 0.1 26.4

EV integrated capacities P in [MW] and

charging demand E in [MWh]

Grid ID #EVs Ppublic Pprivate Epublic Eprivate

Load-1 6771 6.0 60.5 344.6 286.7

Load-2 3769 3.4 34.4 188.7 163.1

PV-1 2696 2.5 23.6 128.7 111.5

PV-2 7739 5.8 63.6 368.3 286.8

Wind-1 2665 3.3 23.9 107.7 93.2

Wind-2 3240 3.9 28.7 140.4 119.7
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The general structure of the ding0 grids was found to be in good accordance
with the real grids, all being operated in open ring structures [92]. However,
the number of satellite buses, i.e. buses connected to the ring by an extra
line, was much higher than in the real grids. Furthermore, the minimum
and maximum line lengths were more extreme in the ding0 grids than in
the compared real-world grids. One reason are aggregated load areas in the
original ding0 grids. For the data basis of this PhD, these are removed and
replaced by spatially resolved grid data. Furthermore, very short lines are
removed to gain more realistic grids. The master thesis found that despite
the structural differences, the diversity of real grids was captured well by
the ding0 grids [92]. For the investigations of this thesis, where the focus
lies on the influence of DERs on differently composed grids, the ding0

grids are therefore evaluated as suitable. We trust that the general trends
and tendencies can be trusted even though individual grids might show
different behaviour in the real world. Therefore, all tools are published open-
source for DSOs and future research. This way, the presented investigations
can be repeated for individual grids.

This thesis focuses on the interplay of DFOs with renewable energy gen-
eration. We therefore focus on rural and suburban grids, as renewable
generation in urban areas is assumed to be neglectable for the grid. How-
ever, urban grids would be an interesting subject for future research since
the density of EVs and HPs is expected to be high in these areas. On the
other side, the grid structure tends to be more robust in these grids with
lower line lengths and higher shares of meshed grids. In the literature, some
studies found a higher influence of DERs on urban grids (e.g. [22], [23])
and others found the opposite (e.g. [86], [95], [96]). We thus recommend
including urban grids in future investigations.

Lastly, six distribution grids might not be enough for a representative study
for entire Germany. While they represent a large share of the 3608 MV
grids (see Fig. 3.5), there are also large areas that are not represented and
urban grids are not considered. Therefore, we recommend expanding the
investigations in this thesis to a more representative set of distribution grids.
The provided methods and tools can be used for such a representative
study.

Modelling Assumptions

While eDisGo is a useful tool to analyse grid issues and estimate the
necessary grid reinforcement or curtailment, it also has some limitations
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we want to discuss in the following. Furthermore, some modelling choices
within this PhD omit certain factors that might influence the results.

First, we compare flexibility provision from DERs with curtailment or grid
reinforcement, omitting alternatives to tackle grid issues, like reactive power
compensation or on-load-tap-changing transformers. These could represent
viable alternative solutions to grid reinforcement and result in lower total
costs [97]. However, reactive power compensation from decentralised flexi-
bility and adjustable transformers with tap changers are not yet widespread.
Therefore, this thesis focuses on the active power provision from DFOs and
its effects on grid reinforcement. Reactive power provision is accounted for
with a fixed cos(ϕ). In future work, it would be interesting to expand the
work with more sophisticated reactive power provision (e.g. Q(U)) from
these sources and its potential to limit voltage violations and reduce the
required grid reinforcement.

Another strong assumption is that as soon as a grid issue occurs in one
of the simulated time steps, this violation results in grid reinforcement. If
violations are short, other measures such as feed-in curtailment or load
shedding might be the cheaper alternative. However, DSOs are not likely to
accept structural congestion in their grids, and we use mean values with
a temporal resolution of 15 minutes or one hour. Shorter peak values are
therefore already smoothed out. Furthermore, we allow for a loading of
100 % without applying any security factor. In this light, the assumption
that reinforcement will be undertaken when any grid issue is detected will
still lead to comparably low values and is a valid assumption. Further-
more, our investigations estimate the reduction potential of reinforcement
needs through temporal flexibility provision by DERs and therefore already
account for alternative measures to grid reinforcement. Nevertheless, it
could be interesting to investigate the interplay of curtailment and grid
reinforcement in future work to find the optimal combination.

The simulated reinforcement is based on time series and, therefore, an
optimistic way of determining grid reinforcement costs. The current practice
is to run a worst-case analysis with simultaneity factors of load and feed-
in and size the grids accordingly [22]. This approach will lead to higher
grid reinforcement needs than the time series based approach. Figure 3.8
shows the reinforcement costs for the 2035 grids with both approaches3.

3 For the worst case analysis, we use the predefined simultaneity factors of eDisGo, which are
summarised in Tab. A.3 in the appendix.
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Figure 3.8: Grid reinforcement costs in percent of total grid value obtained with
timeseries based vs. worst-case approach.

The results are displayed in percent of the current value of the grid4. In
all the investigated grids, the reinforcement costs are significantly lower
using the time series based approach, with relative reductions of 49 - 85 %.
These values mean that if grid planning moves from worst-case analysis
to time series based reinforcement, the reinforcement costs can be reduced
by 49 - 85 % in the investigated grids. However, this would also require
perfect knowledge of the consumption behaviour and renewable feed-in.
Furthermore, no security margin is applied so the grids would be operated
closer to their limits. Time series based modelling is necessary to estimate
the reduction potential of a grid optimised operation of DFOs. When
interpreting the results, it should be considered that the obtained values
constitute a lower bound and that there is already a significant potential to
decrease reinforcement costs using the time series based approach instead
of the worst-case analysis.

Last but not least, the simulated reinforcement follows a heuristic. Therefore,
the solutions that are obtained are not necessarily cost-optimal. However,
optimising grid reinforcement requires integer values and is therefore
not feasible for large-scale grids. Furthermore, real-world grid planning
does not follow a centralised optimal solution but consists of case-by-case
decisions. The implemented heuristics might therefore reflect reality better

4 To estimate the current value of the grid, we calculate the costs of all existing lines and
transformers using the standard cost values introduced in Tab. 3.6.
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than a central optimisation. Lastly, our studies cover larger areas, and on
average, the implemented methods have proven to yield results in the same
range as other large-scale grid studies [87]. Therefore, we conclude that the
methods implemented in eDisGo are also suitable for the grid studies in
this thesis, which focus on larger areas of different MV distribution grids.
It has to be noted that the literature shows quite a wide range of different
values for the reinforcement costs in future systems with high penetrations
of DERs [98] and results should therefore rather be interpreted for trends
and tendencies than for absolute values.

3.2 electric vehicles

EVs will become an important part of the future power system. Their high
charging powers and electricity consumption can pose significant stress
on the grids and require additional generation capacity [99]–[101]. At the
same time, they will introduce great amounts of storage capacity, which can
provide flexibility to the system [100]–[102]. However, EVs are primarily
means of transport and therefore move around, which means the storage is
not always available and changes location [100], [103]. Modelling EV flexi-
bility is therefore a complex task combining the temporal and geographical
dimension [103]. The following subsections describe the chosen modelling
approaches for EVs, later used for the evaluation of the influence of EV
integration on DGs and the national balancing of generation and demand
in renewable power systems.

Section 3.2.1 includes the generation of travel profiles to obtain charging
demand and standing times of individual EVs. Section 3.2.2 explains the
sizing of charging stations. Section 3.2.3 introduces the reference operation
of EVs, if charging remains uncoordinated. In Section 3.2.4, different levels
of EV flexibility are explained. Sections 3.2.5 and 3.2.6 introduce two model
formulations for smart charging of EVs, one modelling each EV and its
battery individually and one aggregating the charging demand of groups
of EVs or charging stations into flexibility envelopes.

3.2.1 Charging Demand and Parking Times

We want to model a large fleet of different EVs to cover different vehicle
types and driving patterns. Therefore, we use the open-source tool Sim-
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BEV [104] to generate travel profiles and charging processes of individual
EVs in a 15-minute resolution.

The underlying data basis is historical mobility data from a large-scale Ger-
man mobility survey, giving information on the trip destination, start and
end times of trips, distance travelled, travel speed and standing time [105].
SimBEV uses probability distributions extracted from this data to simulate
travel profiles of individual EVs. The travel profiles depend on region type5,
season and weekday. In the first step, the trip destination is randomly
chosen. Trip destinations are differentiated between work, business, school,
shopping, private/ridesharing, leisure and home. Per trip destination, prob-
ability distributions for distance travelled, travel speed and standing times
are the basis for a random choice of these attributes for each trip in the
second step.

The last step translates the travel profiles into scheduled charging demand
during specific standing times. For this, SimBEV uses assumptions on the
availability and charging capacity of charging points at different destina-
tions. Therefore, the trip destinations are mapped to three different types
of charging locations - home, work, and public charging. Business and work
trips are mapped to work or public charging, trips back home to home
or public charging and all remaining trip destinations to public charging6.
Whether a charging event will occur upon arrival at the trip destination
is randomly chosen based on predefined probabilities. For example, it is
assumed that the availability of charging opportunities for home charging
points at single-family homes is the highest at 85 % while it is the lowest for
roadside public charging points at 25 %. On the other hand, home charging
consists mainly of 11 kW chargers while charging in public settings is domi-
nated by 22 kW chargers7. Further, high power charging (HPC) at 50-150 kW
is considered as a fallback option in case the state of charge (SoC) of any EV
drops below a minimum threshold of 20 %. In all charging sessions, it is as-
sumed that the EV charges at full capacity until the battery is fully charged
or the standing time ends. Based on a recent study [89], the efficiency
during the resulting charging sessions is assumed to be ηEV = 90 % within

5 Region types from RegioStaR 7 are used: Urban region – Metropolis, Large cities/Second-tier
cities, Medium-sized cities, Small towns and villages, Markets towns in rural areas, Towns in
rural areas, Small towns in rural area [106].

6 The exact shares and a more detailed breakdown of charging locations can be found in Table
II.19 of [107].

7 The probability distribution of charging at different locations and charging powers can be
found in Table II.20 of [107].
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all charging processes. For more detailed information on the underlying
assumptions and modelling in SimBEV, we refer to [107].

The obtained driving profiles contain information on driving and parking
times, the consumed energy during driving, and the scheduled charging
demand at specific destinations. We expand this information with the
minimum required SoC to cover the upcoming trip SOCmin. The initial
SoC SOCinitial , minimum required SoC SOCmin, the driving and parking
times, energy consumption and charging demands are used as input for
the reference operation as well as the model formulation of smart charging
and V2G described in Sections 3.2.5 and 3.2.6. The minimum required SoC
SOCmin

c,t is thereby set for every last time step of a parking event such that
the next driving session can be met without falling below a SoC of 20 %,
if possible. In our simulations, EVs are available for smart charging or
V2G whenever they are plugged into a charging station. Of all parking
events, they are plugged in for 45 % of the parking time. Specifically, they
are plugged in for 51.3 % of the time when parked at home, 41.5 % when
parked at work, 36.5 % when parked in public and 100 % when parked
at a high power charging station. In the remaining time, the EVs are not
plugged in.

3.2.2 Sizing and Grid Connection of EV Charging Stations

In this thesis, an extended version of the travel profiles and charging
demand created during a master thesis [108] is used. In total, 26 880 EVs,
divided into 16 597 battery electric vehicles (BEVs) and 10 283 plug-in
hybrid electric vehicles (PHEVs) of different types in the six investigated
grids were modelled for a full year. Table 3.8 summarises the technical
parameters of the modelled vehicle types (see also [108]) and Table 3.9 the
shares of the different vehicle types in the simulated grids. The different
regions of the grids were chosen to cover different driving profiles and
charging infrastructure setups. In the national investigations, we assume
that the simulated number of EVs is large enough to account for statistical
deviations, such that the aggregated time series can be scaled up with the
number of EVs.

In order to allocate the charging processes to specific sites, we use the
tool TracBEV [109], where potential charging points within each DG are
identified and weighted on geospatial attributes. For home charging, the
potential charging sites are weighted with the total number of apartments
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Table 3.8: Technical characteristics of simulated vehicle types

BEV Types PHEV Types
luxury medium mini luxury medium mini

Max. Charging Power [kW] 350 350 120 120 120 120

Battery Energy Capacity [kWh] 120 100 70 40 30 25

Mean Consumption [kWh/100km] 17.8 14.8 11.9 18.2 15.2 12.1

Table 3.9: Percentages of simulated vehicle types in the investigated grids

BEV Types [%] PHEV Types [%]

luxury medium mini luxury medium mini

Wind-1 10.7 35.2 15.8 6.6 21.8 9.8

Wind-2 9.2 36.8 15.7 5.7 22.8 9.8

PV-1 9.7 38.4 13.6 6.0 23.8 8.4

PV-2 10.8 35.9 15.0 6.7 22.3 9.3

Load-1 13.8 34.1 13.8 8.6 21.1 8.6

Load-2 14.7 35.3 11.7 9.1 21.9 7.2

Total 11.8 35.7 14.3 7.3 22.1 8.8

in the area based on [110]. The weighting of work charging sites depends
on the area and type of industrial, commercial or retail areas provided
by [111]. Potential public and high power charging are assigned to point of
interests (POIs) and existing gas stations [111], respectively. Public charging
sites are weighted according to the density of POIs while HPC stations
are equally weighted. The charging processes are then randomly mapped
to the potential charging points, considering the weight of each charging
point that was determined beforehand. One or more such charging points
connected to the grid at the same grid connection point are defined as a
charging park in the following.

Figure 3.9 shows the distribution of installed capacities of all integrated
charging parks in the six investigated distribution grids for 2035. The
number of home and work charging parks is much higher than that of
public and high power charging parks. The installed charging capacities,
on the other hand, are much higher for the public and high power charging
parks.
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Figure 3.9: Distribution of installed capacities of charging parks in all investi-
gated grids. The ticks on the x-axis mean that charging parks with
the respective installed capacity exist. The bar on the right of this tick
indicates the number of charging parks with this installed capacity.
For clarity, not all of the tick labels are displayed.

The grid integration per charging park is based on the total capacity of
all connected charging points. Charging parks with capacities of up to
300 kVA are integrated into the LV and above that in the MV level. In the
MV grids, new charging parks are connected to the closest grid connection
point or line. In the case of integration into LV grids, the charging park
is integrated into the LV grid whose MV-LV substation is closest. Above
a nominal capacity of 100 kVA, the grid connection is made via a cable
connection directly to the MV-LV substation. Below, the integration process
depends on the use case of the charging park. For home charging, the
charging park is connected to a random household load. In the case of work
charging, the connection is made to a random commercial, industrial, or
agricultural load. In contrast, public charging infrastructure is connected to
a random LV grid connection point. We refer the interested reader to [108]
for more details.
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Figure 3.10: Reference charging with 100 % EV penetration for the different
charging use cases.

3.2.3 Reference Operation

The reference charging is obtained with a heuristic approach. It resembles
a behaviour where the EVs charge directly after arrival with the nominal
charging power until the charging demand of that charging session is fully
met. Figure 3.10 displays the resulting charging powers for full electrification
(i.e. only BEVs) of all private vehicles in Germany (i.e. 48.8 Mio. [112]) over
the hour of the day and day of the year. Displayed are home, work, public
and high power charging. Home charging displays the highest charging
powers at around 18:00, work charging around 7:00. The simultaneity
of work charging is higher than for home charging, with high charging
demands from 6:00-9:00. For home charging, on the other hand, the time
of charging is spread over a longer period from 12:00-23:00, with the
highest values from 16:00-19:00. Public and high power charging show
less pronounced peaks than the other two use cases and are distributed
between 6:00-22:00.
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3.2.4 EV Flexibility

We model different levels of flexibility for EVs, summarised in Tab. 3.10.
In the reference scenario without flexibility (EVs Ref.), an uncoordinated
operation with reference charging is assumed. Furthermore, we model
four different flexible scenarios for EVs with increasing levels of flexibil-
ity. For each level of flexibility, the underlying assumptions are detailed
below.

EVs Flex: Only home and work charging are assumed to be flexible. For
public and high power charging, a fixed time series as per reference charg-
ing is assumed. To model flexible charging, we assume that the charging
demand of a charging session can be freely scheduled within the entire
standing time of the originally scheduled charging session.

EVs Flex+: In this scenario, in addition to home and work charging, public
charging is also flexible. As in the Flex scenario, shifting is only allowed
within the same charging session.

EVs Flex++: In the Flex++-scenario, the flexibility of EV charging is further
increased. Like in Flex+, charging at home, work and in public is assumed
to be flexible, and high power charging to be inflexible. However, in this
case, shifting over different parking events is allowed. For example, the
charging demand originally scheduled at work can be shifted to a later
charging event at home.

EVs V2G: In this scenario, vehicle-to-grid, i.e. feeding power back into the
grid, is allowed additionally to shifting between different standing periods.
Again, home, work and public charging are assumed to be flexible.

3.2.5 Model Formulation Based on Battery State of Charge

A first model formulation describes every EV separately. Such detailed mod-
elling is necessary if the charging location matters and charging demand
can be shifted between different charging locations, i.e. when investigating
the influence of EV charging on the grid and allowing shifting over different
standing times. A simpler approach can be applied if the charging loca-
tion is irrelevant or predefined (introduced in Section 3.2.6). The detailed
model formulation is based on a master thesis that was supervised in the
course of this PhD, where a mixed-integer linear programming (MILP) and
linearised problem set for smart charging with V2G were developed [113].
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Table 3.10: Levels of flexibility modelled for EVs

Name Level of Flexibility

EVs Ref. None - Charging with reference operation
EVs Flex Flexibility to shift within standing times for charging use

cases home and work
EVs Flex+ Flexibility to shift within standing times for charging use

cases home, work and public
EVs Flex++ Flexibility to shift over standing times for charging use

cases home, work and public
EVs V2G Flexibility to shift over standing times for charging use

cases home, work and public, utilisation of V2G

Since this work focuses on large-scale DGs, which requires a linear prob-
lem formulation, only this version of the problem set is introduced in the
following.

The development of the SoC socc,t of every EV c is modelled by:

socc,t = socc,t−1 +
(pin

c,t − pout
c,t ) · ∆t

CAPc
∀ c ∈ C, t ∈ T, (3.1)

SOCmin
c,t ≤ socc,t ≤ 1.0 ∀ c ∈ C, t ∈ T, (3.2)

pout
c,t = pV2G

c,t +
Edriving

c,t

∆t
∀ c ∈ C, t ∈ T, (3.3)

where CAPc is the EV‘s battery capacity, pin
c,t the charging power and pout

c,t
the power flowing out of the EV, either by discharging using V2G (pV2G

c,t )

or during driving (Edriving
c,t /∆t). Parameter Edriving

c,t thereby represents the
consumed energy at time step t while driving. For the first time step, socc,t−1
needs to be replaced by SOCinitial

c in (3.1). The SoC has to stay within certain
limits as defined in (3.2). The minimum is time dependent as it needs to
be ensured that the vehicle is sufficiently charged at the time of the next
departure to make its next scheduled trip. Furthermore, the SoC can not
exceed 1.0.

Both charging and discharging are constrained by the maximum charging
power Pmax

c limited by vehicle characteristics defined for each vehicle c
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and the maximum charging power Pmax
s of the station s to which the car is

connected:

pin
c,t ≤ Pmax

c ∀ c ∈ C, t ∈ T, (3.4)

pV2G
c,t ≤ Pmax

c ∀ c ∈ C, t ∈ T, (3.5)

pin
c(s),t

ηEV
+ ηV2G · pV2G

c(s),t ≤ Pmax
s ∀ c ∈ C, t ∈ T. (3.6)

For times when the car is not connected to any station, charging pin
c(s),t and

discharging pV2G
c(s),t are inhibited by Pmax

s = 0.

The charging power at every charging station s is the sum of charging and
discharging events of EVs connected to that station C(s) at time t:

pEV
s,t = ∑

c∈C(s)
(

pin
c,t

ηEV
− ηV2G · pV2G

c,t ) ∀ s ∈ S, t ∈ T. (3.7)

With the given problem formulation, simultaneous charging and discharg-
ing can occur, e.g. to reduce necessary feed-in curtailment. The standard
measures to counteract this behaviour are to include binaries or the product
of charging and discharging as a penalty term in the objective function.
However, both of these implementations lead to a significant increase in
complexity and result in the larger numbers of EVs being no longer solvable.
We therefore choose a linear penalty term penEV instead, that is added to
the objective function:

penEV = δcharge(∑
s∈S

∑
t∈T

pEV
s,t · ∆t − Etot), (3.8)

Etot = ∑
s∈S

∑
t∈T

(pEV,re f
s,t · ∆t). (3.9)

Thereby, the additional energy consumption through charging losses is
penalised by subtracting the total energy consumption Etot with reference
operation pEV,re f

s,t from the charged energy with unconstrained optimised
charging. The weighting of this penalty term influences the overall utilisa-
tion of V2G. For very high δcharge, V2G utilisation is completely avoided as
it leads to more losses. For very low values, V2G is used to waste energy
by simultaneously charging and discharging to avoid feed-in curtailment.
Therefore, it is necessary to choose a reasonable value for the weight and
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correct results if simultaneous charging and discharging occur neverthe-
less.

3.2.6 Model Formulation Based on Energy and Power Envelopes

The second formulation is based on energy and power envelopes [114] and
was developed in [115] and [116]. The idea is that energy and power must
stay within predefined time-dependent lower and upper bounds but can
be scheduled freely within these boundaries. This concept can be applied
to charging stations if their charging demand is predefined or for groups
of vehicles or charging stations if the charging location is irrelevant, e.g.
all vehicles in one LV grid if we assume the grid will not constrain the
charging. The application to the different levels of EV flexibility is explained
later in this section.

Fig. 3.11 shows an exemplary course of lower and upper bounds of energy
and charging power of a work charging park containing eight charging
points. The envelopes are displayed for the Flex scenario, only allowing
shifting within the originally scheduled charging session. The lower bound
of the charging power is assumed to be zero, and the upper bound equals
the sum of charging powers of connected EVs. The lower bound of energy
corresponds to a charging behaviour where the cars are left uncharged as
long as possible to be charged at full capacity for the last time steps within
the standing time. On the other hand, the upper energy bound corresponds
to direct charging at full capacity until the charging demand is met. When
a charging park contains several charging points, the aggregated bands are
obtained by adding up the individual upper and lower bands.

The general formulation of the model is:

ec,t = ec,t−1 + ηEV · yEV
c,t · pEV

c,t · ∆t

− ηV2G · yV2G
c,t · pV2G

c,t · ∆t ∀c ∈ C, t ∈ T \ {0}, (3.10)

0 ≤ pEV
c,t ≤ PEV

c,t ∀c ∈ C, t ∈ T, (3.11)

0 ≤ pV2G
c,t ≤ PEV

c,t ∀c ∈ C, t ∈ T, (3.12)

Ec,t ≤ ec,t ≤ Ec,t ∀c ∈ C, t ∈ T, (3.13)

ec,t =
1
2
·
(
Ec,t + Ec,t

)
∀c ∈ C, t ∈ {0, tend}, (3.14)

yEV
c,t + yV2G

c,t ≤ 1 ∀c ∈ C, t ∈ T, (3.15)
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Figure 3.11: Lower and upper bounds of charging power and energy level at
exemplary charging park.

yEV
c,t , yV2G

c,t ∈ {0, 1} ∀c ∈ C, t ∈ T, (3.16)

where ec,t is the energy level for station or aggregate of EVs or stations c,
i.e. cumulative electricity consumption of c, ηEV and ηV2G are the charging
and discharging efficiencies and PEV

c,t and PEV
c,t , Ec,t and Ec,t are the time-

dependent lower and upper bound on charging power and energy level.
These are obtained with the help of the EV driving schedules and depend
on the assumed level of EV flexibility. The binaries yEV

c,t and yV2G
c,t are

introduced to prevent simultaneous charging and discharging of the EVs.
In (3.14), the cumulative actual energy withdrawal at each station is fixed to
the mean of the lower and upper energy band at the beginning and end of
the simulation period to avoid that EVs simply minimise their consumption
by converging towards the lower energy bound towards the end of the
simulation.

If V2G is not possible, (3.10) can be simplified to:

ec,t = ec,t−1 + ηEV · pEV
c,t · ∆t ∀c ∈ C, t ∈ T \ {0}, (3.17)

and (3.12), (3.15) and (3.16) omitted. We then arrive at a simplified linear
version of the problem set comprising (3.17), (3.11), (3.13) and (3.14).
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Application to Flexibility Scenarios

The flexibility scenarios defined in Section 3.2.4 result in different energy
and power envelopes. The considered use cases thereby change which
stations or charging use cases are included in set C. The influence on the
envelopes themselves is described below for each flexibility scenario.

EVs Flex and Flex+: The upper power PEV
c,t is restricted by the charging

power of connected EVs and charging stations. The lower power is set to
PEV

c,t = 0 since no discharging is allowed in this case. The energy boundaries
are determined for each charging station by applying two different charging
strategies. The upper band Ec,t represents a charging strategy where the
EV directly charges upon arrival with the maximum charging power until
the charging demand is met. The lower bound Ec,t represents a behaviour
where the EV charges as late as possible with full charging power.

EVs Flex++: This scenario’s power and energy bands are obtained for
individual EVs instead of aggregated to charging stations. They follow
the assumption that the SoC of an EV has to stay within certain limits: a
minimum SoC (SOCmin) and a maximum SoC (SOCmax) that should both
not be exceeded at any point in time. The minimum SoC is assumed to be
SOCmin = 20 % and the maximum SoC is set to SOCmax = 100 %. The lower
energy band is calculated so that the EV charges as late as possible. This
means that the EV charges at the latest possible occasion, with just enough
energy for the next driving event such that the SoC does not drop below
SOCmin during the driving session. The upper energy boundary represents
a charging as early as possible, meaning that after every driving session,
the EV charges as soon as possible until SOCmax is reached. The minimum
power is set to zero. The maximum charging power is the nominal power of
the charging point if the car is plugged in for a parking session; otherwise,
it is zero.

EVs V2G: In this scenario, V2G is allowed in addition to shifting over
standing times. To account for this, the lower power bound PEV

c,t is set to

the same values as PEV
c,t , meaning that the EVs can discharge at the same

rates as they can charge. If the EV is disconnected, the lower power band
stays at zero. The discharging efficiency is assumed to be the same as the
charging efficiency ηV2G = ηEV = 0.9.
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3.2.7 Critical Reflection

In this section, we want to critically reflect on input data and modelling
assumptions and their influence on the results.

Input Data

Modelling results are always dependent on the input data. As large-scale
measured data sets with all the required information to model flexible
charging are still missing, we use synthetically created travel and charging
profiles to model EVs and their flexibility. To assess the plausibility of the
modelled profiles, we compare the annual electricity consumption per EV
and the resulting charging profiles with other studies and measured data
from the literature in the following.

The integration of EVs leads to an increase in electricity consumption.
Therefore, the influence of EV integration will also depend on how much
additional consumption is expected. To put the results into perspective,
we therefore compare the resulting mean electricity consumption per EV
with values from other studies ( [117]–[120] ) in Fig. 3.12. It is visible
that our assumed electricity consumption for EVs is on the lower end.
However, it still lies within assumed literature values and therefore shows a
reasonable order of magnitude. The relatively low value might be because
our investigations are limited to private vehicles, which show different
driving behaviours from commercially used vehicles. To showcase the
influence of this factor, we include the values of total electricity consumption
per vehicle in the German development plan when accounting for all
vehicles (NEP2035) and when only accounting for privately used vehicles
(NEP2035 - only private) [17]. When only accounting for privately used
vehicles, the annual electricity consumption per vehicle decreases by 26.5 %,
and the value is much closer to our assumed electricity consumption.

The comparison with other studies indicates that the influence of EVs could
be higher than the results of this thesis imply, as the assumed consumption
is on the lower end. On the other hand, technology development could
increase efficiency and reduce the electricity consumption of EVs. Overall,
projections of technology uptakes are always subject to uncertainty. There-
fore, all results for temporal and geographic flexibility needs should not
be interpreted with absolute numbers but more for trends and tenden-
cies.
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Figure 3.12: Annual electricity consumption of a single EV in comparison with
other studies.

Not only the overall electricity consumption of EVs is an important factor
but also when this additional demand occurs and what is the peak demand.
We therefore qualitatively compare the charging pattern with empirical
data from [121]. The empirical data comprised charging events collected
in three field trials: CROME, iZEUS and Get eReady. The over 100 EVs
in CROME and 327 EVs in Get eReady were mainly used by companies,
while the over 50 EVs in iZEUS were mainly used privately. Figure 3.13

shows the mean daily (top) and weekly (bottom) charging patterns from
the literature (left) and the simulated values used in this thesis (right). The
daily consumption is standardised to 4.44 kWh and the weekly profile to
41.051 MWh following [121] to enable a direct comparison.

Overall, the daily charging pattern resembles the load profile in [121] well,
showing a similar shape and peak value. In both profiles, there are peaks
in the morning and evening. However, the morning peak in [121] seems
to be slightly later, around 9:00. In contrast, the peak in our data occurs
around 8:00. Furthermore, the morning peak in their measured profiles is
wider, showing the lowest value around 13:30 while in our data, the lowest
value occurs around 11:00. Another difference is that there are two separate
afternoon/evening peaks in the measured profiles, around 16:00 and 18:00

in the measured profiles. In the simulated profiles, only one broader peak
around 18:00 is visible.

The weekly profiles show larger differences but are also more difficult to
compare because of the different temporal resolutions. Both profiles show
different charging behaviours during the week and over the weekends.
However, the difference is more pronounced in the measured profiles
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in [121], showing significantly lower weekend consumption. One reason
for the difference in measured and simulated profiles could be that in the
measured trial runs, two of the three studies consisted of vehicle fleets
used within organisations or companies [121]. Naturally, their utilisation
on the weekends will be lower than for privately owned cars. This effect
was also visible in the comparison with the third case study, where most
cars were privately used. There, the difference between charging processes
on weekdays and weekend days was less pronounced [121].

In general, the simulated profiles resemble the measured profiles in [121]
well and therefore constitute a good basis for our investigations.

Modelling Assumptions

We applied several simplifications for the modelling of EVs. First, we al-
low the full range of charging powers from zero to the nominal charging
capacity at all times and apply a constant efficiency value. We thereby omit
that with higher SoC values, the active charging power decreases [121]. Fur-
thermore, users might oppose very low active charging power values since
the charging efficiency decreases [122]. While this assumption introduces
inaccuracies, it is a necessary simplification to reduce the complexity to
a manageable size. In aggregate, this simplification should be acceptable.
Control algorithms for individual EVs or charging stations should consider
these changes in efficiency, however.

Second, we use the strong assumption that the users always plug in the EV
when charging infrastructure is available to estimate the maximum potential
of smart charging and V2G to relieve the stress on the grids or participate
in the balancing of generation and load. In reality, it would need incentives
to achieve such a behaviour and use its full potential. However, we want to
showcase the maximum potential of EVs in this thesis. Providing adequate
incentives to users to achieve system-friendly behaviour is a second step
and a different research question, which is partly touched on in Part IV but
not the main focus of this thesis.

Lastly, we assume the same driving behaviour as in the historic surveys
underlying simBEV to model the travel behaviour of EV users. This as-
sumption omits that the charging behaviour will also be influenced by the
availability of charging infrastructure and policy measures [123]. Therefore,
the driving and charging behaviour might change in the future, which
strongly influences the effects on the grid [124]. With this respect, efforts
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exist to move from a system mainly based on individual transport to a suf-
ficient transport system with a higher share of public transport [125]. Such
a mobility transition would lead to a decreased number of private vehicles
and a different utilisation of them [125], [126]. While the decreased number
can be easily accounted for in scenario variations, it would be interesting
to investigate the influence of adapted driving behaviour on the flexibil-
ity potential of private EVs in future work. Furthermore, the influence of
autonomous driving could be integrated into future investigations.

3.3 heat pumps

Heat pumps offer the potential to decarbonise the heating sector by using
renewable electricity for heating. Compared to other residential appliances,
their nominal power values are relatively high. Furthermore, high simul-
taneities are expected as the heating demand depends on the outside
temperature, which is the same for neighbouring buildings. They might
therefore pose high stress on the grids. Additionally, their consumption
shows a seasonal pattern as heating demand is much higher in winter
with additional space heating demand than in summer with only demand
from domestic hot water. This seasonality poses an additional challenge
for balancing supply and demand as it is exactly opposite to renewable
generation from PV. On the other side, the electrification of heating also
offers flexibility potential, as the latency in heating allows for a shifting
of electricity demand without compromising user comfort. Furthermore,
TES is much cheaper than electricity storage and could offer additional
flexibility to shift the electricity demand of HPs.

The following sections explain the modelling of HPs including TES. Sec-
tion 3.3.1 includes heat demand and coefficient of performance (COP),
Section 3.3.2 the sizing of HPs and Section 3.3.3 explains their assumed
reference operation. In Section 3.3.4, different levels of HP flexibility are
introduced. Sections 3.3.5 and 3.3.6 describe the modelling of HPs with
lossy and ideal TES for flexibility provision. We want to critically reflect on
the chosen input data and modelling assumptions in Section 3.3.7.

3.3.1 Heat Demand and COP

We want to investigate the influence of increasing penetrations of residential
HPs on geographical and temporal flexibility needs. The HPs cover residen-
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Figure 3.14: Heat demand for space heating (upper left) and DHW (upper right)
and COP for air- (lower left) and ground-sourced (lower right) floor
heating.

tial heat demand and operate with a time-varying COP. For heat demand
and COP, we use input data from When2Heat [127], [128]. This data set
comprises national building heat demand time series in an hourly resolution
and COP time series that depend on the heat source and sink.

Figure 3.14 displays the thermal heating demand for space heating (upper
left) and domestic hot water (DHW) (upper right) for single family houses
and the COP time series for air- (lower left) and ground-sourced (lower
right) heat pumps for floor heating. The time series are displayed for a
representative year8 and the heating time series are scaled with the space
heating and DHW demand of private households in Germany in 2020

(space heating: 504 TWh, DHW: 105 TWh) [129].

Both space heating demand and COP show a seasonal effect. While the
space heating demand is higher in winter, the COP values show the opposite
tendency. In general, the COP time series of air- and ground-sourced HPs
show a similar pattern, but ground-sourced HPs display higher absolute

8 In line with later investigations, we use 2011 as a representative weather year [87].
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Table 3.12: Parameters of γ-distribution for HPs.

Shape Location Scale Min Max

5.43 -0.77 2.54 0 kW 35 kW

values for the COP. On the other hand, the heating demand for DHW does
not show a strong seasonality. However, it shows a daily pattern with a
peak in the morning hours. All displayed time series show higher values
during the day than at night. This effect is most pronounced for DHW
heating demand.

3.3.2 Sizing of HPs and TES

We use a probabilistic approach to simulate increasing penetrations of resi-
dential HPs inside the distribution grids. Therefore, residential loads inside
the simulated grids are randomly selected until the desired penetration is
reached. The size of the HPs is again randomly chosen from a probability
distribution, and heat demand and TES are scaled accordingly. For the six
investigated grids, a total of 31 518 heat pumps has thus been modelled at
a 100 % penetration of HPs. For the national investigations, we assume that
this number is large enough to account for statistical deviations and use
the resulting mean values for HP and TES sizes.

We size HPs according to current sales statistics and fit a gamma distri-
bution to input data on the number of installed HPs by nominal thermal
capacity in 2021 [130]. Since no capacity-specific values were available for
Germany, we use data from Switzerland. The extracted values are displayed
in Tab. 3.12 and result in a distribution with a mean thermal capacity of
PHP,th

mean = 13.0 kW, which is displayed in Fig. 3.15. The size of residential
HPs is assumed to lie between 0 kW and 35 kW. Random draws from the
gamma distribution outside this window are mapped to 0 kW and 35 kW,
respectively. In accordance with [131], a share of 80 % air-source and 20 %
ground-source HPs is assumed.

The electrical power PHP,el
hp of the HP is obtained by:

PHP,el
hp =

PHP,th
hp

min(COPhp,t)
∀hp ∈ HP, (3.18)
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where PHP,th
hp is the nominal thermal capacity drawn from the gamma

distribution and min(COPhp,t) the minimum of the annual COP time series
provided by [127]. We assume that the installed thermal capacities of the
HPs are chosen in a way that the maximum heat demand of the household
can be met while also accounting for blocking hours imposed by the grid
operator. In [17], these blocking hours are set to a total of six hours per day,
i.e. TB

day = 6 h, with a maximum of two consecutive hours, i.e. TB
cons = 2 h.

The installed thermal power PHP,th
hp of the HP is assumed to be oversized in

a way that it can compensate for the daily blocking hours. It follows:

PHP,th
hp =

24h
24h − TB

day
· max(PD,th

hp,t ) ∀hp ∈ HP, (3.19)

where PD,th
hp,t is the heat demand of the building for time step t. With PHP,th

hp
drawn from the distribution, we obtain this building-specific heat demand
time series by using the rated heat demand time series from [127] and
scaling it so that (3.19) is fulfilled. The mean annual heat demand of the
resulting time series equals 21.5 MWh. The heat storage installed with a
HP is assumed to be configured such that it can cover the heat demand of
the two consecutive blocking hours TB

cons. We therefore scale the size of the
TES to meet the maximum heat demand of two consecutive hours in PD,th

hp
and obtain a medium storage size of 18.3 kWh. The size of the TES is later
varied to model different levels of flexibility (see Section 3.3.4).
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Figure 3.16: Electrical power of 100 % HP penetration (left) and mean daily
pattern per HP with standard deviation (right).

3.3.3 Reference Operation

In the case of reference operation, HPs are assumed to provide the heat
demand directly, so their active power consumption pHP,el

hp,t is calculated
by:

pHP,el
hp,t =

PD,th
hp,t

COPhp,t
∀hp ∈ HP, t ∈ T, (3.20)

where PD,th
hp,t is the thermal demand of the household and COPhp,t the

coefficient of performance of the heat pump.

Figure 3.16 shows the resulting electricity demand for 100 % HP penetra-
tion on the left, meaning that all residential buildings in Germany (i.e.
19.4 Mio.) are equipped with a HP. On the right, the mean daily electricity
consumption profile per HP with the standard deviation as the shaded area
is displayed. The electricity consumption shows a strong seasonal pattern,
with higher consumption in the winter, which is caused by higher space
heating demand and lower COP values. On the daily scale, a peak is present
in the early morning hours and the late afternoon.

3.3.4 HP Flexibility

We want to investigate the influence of HP integration with different levels
of flexibility. Table 3.13 includes the different modelled levels of flexibility. In
the reference scenario (HPs Ref.), HPs are operated with reference operation
and do not offer any flexibility. In the flexible scenarios (HPs Flex, Flex+
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Table 3.13: Levels of flexibility modelled for HPs

Name Level of Flexibility

HPs Ref. None - HP reference operation
HPs Flex Flexibility to shift heat demand by at least two hours;

2 h-TES, CTES
mean = 18.3 kWh

HPs Flex+ Flexibility to shift heat demand by at least four hours;
4 h-TES, CTES

mean = 36.6 kWh
HPs Flex++ Flexibility to shift heat demand by at least eight hours;

8 h-TES, CTES
mean = 73.2 kWh

and Flex++), HPs are equipped with TES to offer the flexibility to shift
the thermal demand without compromising user comfort. The originally
scheduled heat demand PD,th

hp,t stays the same and has to be always covered.
The electricity demand of the HP, on the other hand, can be altered using
the TES.

HPs Flex: In this scenario, the HPs are equipped with TES that can shift
the highest thermal demand of two consecutive hours. This is the period
that DSOs were allowed to block thermal devices (cf. § 7 BTOElt9). In
combination with the heat demand time series and sales statistics of HPs
(further detailed in Section 3.3.2), we arrive at a mean thermal capacity of
CTES

mean = 18.3 kWh.

HPs Flex+ and HPs Flex++: For these scenarios, the energy capacity of the
TES is doubled, respectively quadrupled, compared to the HPs Flex scenario.
This way, a minimum of four, respectively eight, hours of heat demand can
be shifted by the TES.

3.3.5 Model Formulation with Lossy TES

HPs are modelled including a TES, which can be used to shift the de-
mand:

pHP,el
hp,t =

pHP,th
hp,t

COPhp,t
∀hp ∈ HP, t ∈ T, (3.21)

9 In new regulations starting from 2024, the power of controllable loads can be capped to 4.2 kW
instead of blocking them entirely [132].
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pHP,th
hp,t = PD,th

hp,t + yTES,ch
hp,t · pTES,ch

hp,t − yTES,dis
hp,t ·pTES,dis

hp,t

∀hp ∈ HP, t ∈ T, (3.22)

soeTES
hp,t = ηTES

stat · soeTES
hp,t−1 + (ηTES

dyn · yTES,ch
hp,t · pTES,ch

hp,t

− yTES,dis
hp,t · pTES,dis

hp,t ) · ∆t ∀hp ∈ HP, t ∈ T \ {0}, (3.23)

soeTES
hp,t =

1
2
· CTES

hp ∀hp ∈ HP, t ∈ {0, tend} (3.24)

0 ≤ pHP,th
hp,t ≤ Pnom,th

hp ∀hp ∈ HP, t ∈ T, (3.25)

0 ≤ soeTES
hp,t ≤ CTES

hp ∀hp ∈ HP, t ∈ T, (3.26)

yTES,ch
hp,t + yTES,dis

hp,t ≤ 1 ∀hp ∈ HP, t ∈ T, (3.27)

yTES,ch
hp,t , yTES,dis

hp,t ∈ {0, 1} ∀hp ∈ HP, t ∈ T, (3.28)

where pHP,el
hp,t is the electricity demand of the HPs and pHP,th

hp,t the thermal
demand of the HPs constrained by the nominal thermal capacity of the
HPs Pnom,th

hp , COPhp,t the coefficient of performance, PD,th
hp,t the heat demand,

pTES,ch
hp,t and pTES,dis

hp,t the thermal charging and discharging of the TES, soeTES
hp,t

the state of energy of the TES constrained by its total energy capacity CTES
hp .

Heat losses of the TES are represented by the static efficiency ηTES
stat and

losses during the charging process by the dynamic efficiency ηTES
dyn . For

simplicity, the dynamic losses are implemented as round-trip losses and
are only applied to the charging process. The binaries yTES,ch

hp,t and yTES,dis
hp,t

are introduced to prevent simultaneous charging and discharging of the
TES.

3.3.6 Model Formulation with Ideal TES

While the introduced formulation allows to model losses of the TES, the
necessary binary variables significantly increase the complexity compared
to a linear ideal formulation. Thus, for large-scale grid studies, the model
formulation with lossy TES is not tractable. We therefore introduce a second,
simplified formulation with ideal TES where all losses are neglected and
the storage efficiency is assumed to be 100 %.



3.3 heat pumps 93

The model formulation can thus be simplified to:

pHP,el
hp,t =

PD,th
hp,t + pTES

hp,t

COPhp,t
∀hp ∈ HP, t ∈ T, (3.29)

soeTES
hp,t = soeTES

hp,t−1 + pTES
hp,t · ∆t ∀hp ∈ HP, t ∈ T \ {0}, (3.30)

soeTES
hp,t =

1
2
· CTES

hp ∀hp ∈ HP, t ∈ {0, tend} (3.31)

0 ≤ pHP,el
hp,t ≤ Pnom,el

hp ∀hp ∈ HP, t ∈ T, (3.32)

0 ≤ soeTES
hp,t ≤ CTES

hp ∀hp ∈ HP, t ∈ T, (3.33)

where thermal charging and discharging of the TES are combined to a single
variable pTES

hp,t , which makes the binary variables obsolete. The thermal

(dis-)charging pTES
hp,t is indirectly constrained by the capacity of the TES, the

thermal power provided by the heat pump and the heat demand at time
t, assuming these are the binding limitations. The state of energy at the
beginning and end of each simulated day is set to 1

2 CTES
hp .

3.3.7 Critical Reflection

Again, we want to reflect on input data and modelling assumptions and
how they affect the modelling results.

Input Data

First, we compare the assumed electricity consumption per HP to other
studies ( [117], [118], [133], [134] ) in Fig. 3.17. We can see that the electricity
consumption for HPs is comparably high but lies within the range of
other literature values. The relatively high values could be because we
use current sales statistics for the sizing, which do not include possible
increases in efficiency and building retrofits. Literature values considering
these developments might obtain lower values. Furthermore, it is likely that
currently, mostly wealthy consumers with single family houses purchase
HPs. Their heat demand tends to be higher because of the larger size of
the house compared to flats, and therefore, current sales statistics might
overestimate the mean size of HPs in a fully electrified system.

We use input data from When2Heat, , which provides national time series
data, as input for the heat demand. While these are suitable for an applica-
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tion to the national system, they introduce inaccuracies when applied to
individual HPs in the DGs. Aggregated time series data already smoothed
out the peak demands of individual consumers. Therefore, the grid rein-
forcement needs in the lower voltage levels will likely be underestimated
when using aggregated demand time series. Similarly, the reduction poten-
tial through a smart operation will most likely be underestimated, as peaks
are already smoothed out and all consumers have the same heating demand
profile. However, a comparative study showed that while aggregated time
series data underestimated the influence of HPs on grid issues, the main
insights stayed the same [135]. We therefore trust that the main results are
still robust even with the aggregated profiles. For further investigations,
we want to point out that the newer version of the grids comes with disag-
gregated building-specific heating profiles and could serve as a basis for
future case studies with more realistic heating profiles [98].

Modelling Assumptions

On the modelling side, we use a simplified energy-based modelling of HPs
and TES. These models are of low accuracy but can be used for determining
seasonal energy use or economic investigations [136]. In reality, the COP
not only depends on the time but also the operation point of the heating
system and the temperatures of the inlet and outlet [137]. With higher
compressor speeds, the COP decreases, which correlates with high power
values [137]. Therefore, peak demand might be higher than estimated in
our investigations and, consequently, also the influence on the grid.
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Part of the simplified energy-based model is the assumption that the original
heating demand is not altered. In reality, the thermal inertia of the building
allows a limited shifting of the heating demand without compromising
user comfort [138]. While directly including a detailed building model is
not feasible, a soft coupling of models could allow for a more realistic
representation of building flexibility in future work. In a master thesis
co-supervised in the course of this thesis [139], this was done by including
flexibility envelopes determined with detailed building models from [138]
into the optimisation. This way, other influencing factors, such as gains
from solar radiation and building occupancy, could be included in the
simulations. However, a comparison of both approaches has not been
carried out but would be interesting for future work.

In our work, heat pumps operate continuously between zero and the nom-
inal thermal capacity. Traditionally, thermal devices operated differently,
using a control scheme where the heat pumps are either fully turned on
at nominal capacity or turned off. The heat pump would turn off when a
maximum temperature is exceeded and turn on again when the tempera-
ture drops below a minimum bound. However, with future technological
advancements, an adapted operation is possible. We furthermore model
a temporal resolution of 15 minutes to one hour, within which on-off cy-
cling could also result in continuous values. When on-off cycles have to be
deployed, the potential to decrease peaks might be lower, and the original
peaks higher than in our investigations. This would likely mean a higher
stress on the grids and additional shifting requirements to balance demand
and supply (although the influence on the latter should be low).

3.4 battery electric storage

Already nowadays, many residential PV systems are equipped with BESS
to increase the self-consumption of PV [18]. Naturally, BESS offer a high
flexibility potential as their primary use is flexibility provision. They could
both benefit the grid by reducing peaks from PV feed-in and electricity
demand and the balancing of generation and load by shifting PV feed-in into
times of higher demand. Current regulations incentivise self-consumption.
While residential BESS therefore help balance local PV generation and
demand, there are no real incentives to reduce the grid impacts. In this
thesis, we investigate the potential of BESS to target both flexibility needs,
the temporal shifting of generation and demand and the geographical needs
of the grid.
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Table 3.15: Parameters of γ-distribution for PV.

Shape Location Scale Min Max

190.89 -46.09 0.29 0 kW 20 kW

The remainder of the Section is structured as follows. In Sections 3.4.1 and
3.4.2, the sizing and reference operation of BESS is explained. Sections 3.4.3
and 3.4.4 describe the modelling of lossy and ideal BESS and Section 3.4.5
critically reflects on input data and modelling assumptions.

3.4.1 Sizing of Batteries

We assume that BESS are only installed in households that also own a PV
system and that batteries are sized relative to the size of the PV plant. The
energy capacity of the BESS is scaled with a fixed ratio of 1 kWh/kWp [140]
relative to the installed capacity of the PV plant. The rating of charging
power to energy capacity is set to 0.6 kW/kWh [140].

The size of the PV plant, in turn, is drawn from a gamma distribution
fitted to input data from [140], which contains sales statistics of PV systems
in Germany for the years 2019 to 2021. For our investigations, we use
the 2021 values. The obtained values for the fitted gamma distribution
are summarised in Tab. 3.15 and both input data and fitted distribution
are displayed in Fig. 3.18. The resulting distribution has a mean of 8.4 kW
whereas, in line with the input data, the minimum size of a PV plant is
assumed to be 0 kW and the maximum size 20 kW. If a random draw from
the gamma distribution returns a value outside this range, it is adjusted to
the respective extreme value.

3.4.2 Reference Operation

In the case of reference operation, BESS charge as soon as the PV feed-in
exceeds the demand and discharge as soon as the demand exceeds the
PV feed-in. Figure 3.19 shows the battery operation over the year for a
scenario where every residential building in Germany is equipped with a
PV-battery-system on the left. The right shows the mean daily charging
profile per BESS and its standard deviation. It shows that the batteries
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Figure 3.18: Input data and fitted gamma-distribution for sizing of residential
PV systems.

mainly charge before noon and discharge in the evening. Next to the daily,
there is also a seasonal pattern, where in summer, the charging starts earlier
and the discharging later than in winter. This effect is caused by the PV
feed-in, which shows the same seasonality. However, while PV feed-in is
highest around noon and in the early afternoon, the battery charging shows
close to no charging in these times. The low values imply that usually, the
batteries are fully charged at that time and will not reduce feed-in peaks of
PV.

3.4.3 Model Formulation with Lossy Battery

BESS are modelled with the following formulation:

soeBS
bs,t = soeBS

bs,t−1 +
(

ηBS,ch
bs · yBS,ch

bs,t · pBS,ch
bs,t −

yBS,dis
bs,t · pBS,dis

bs,t

ηBS,dis
bs

)
∆t

∀bs ∈ BS, t ∈ T \ {0}, (3.34)

soeBS
bs,t =

1
2
· CBS

bs ∀bs ∈ BS, t ∈ {0, tend} (3.35)

0 ≤ soeBS
bs,t ≤ CBS

bs ∀bs ∈ BS, t ∈ T, (3.36)

0 ≤ pBS,ch
bs,t ≤ Pnom

bs ∀bs ∈ BS, t ∈ T, (3.37)

0 ≤ pBS,dis
bs,t ≤ Pnom

bs ∀bs ∈ BS, t ∈ T, (3.38)

yBS,ch
bs,t + yBS,dis

bs,t ≤ 1 ∀bs ∈ BS, t ∈ T, (3.39)
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Figure 3.19: Electrical power of 100 % PV and BESS penetration, i.e. every resi-
dential building owns a PV system with BESS, (left) and mean daily
pattern per BESS with standard deviation a shaded areas (right).

yBS,ch
bs,t , yBS,dis

bs,t ∈ {0, 1} ∀bs ∈ BS, t ∈ T, (3.40)

where CBS
bs is the battery capacity, Pnom

bs the nominal charging power and
ηBS,ch

bs and ηBS,dis
bs are the charging and discharging efficiencies of the bat-

tery. The state of energy soeBS
bs,t evolves according to charging pBS,ch

bs,t and

discharging pBS,dis
bs,t of the battery. In order to ensure that charging and

discharging never occur at the same time, the binaries yBS,ch
bs,t and yBS,dis

bs,t are
introduced.

3.4.4 Model Formulation with Ideal Battery

To investigate the maximum positive effect, we model the BESS with an
efficiency of 100 %, resulting in the following set of constraints:

soeBS
bs,t = soeBS

bs,t−1 + pBS
bs,t · ∆t ∀bs ∈ BS, t ∈ T \ {0}, (3.41)

soeBS
bs,t =

1
2
· CBS

bs ∀bs ∈ BS, t ∈ {0, tend} (3.42)

−Pnom
bs ≤ pBS

bs,t ≤ Pnom
bs ∀bs ∈ BS, t ∈ T, (3.43)

0 ≤ soeBS
bs,t ≤ CBS

bs ∀bs ∈ BS, t ∈ T, (3.44)

where soeBS
bs,t is the state of energy of the battery system bs, CBS

bs the battery
capacity, pBS

bs,t the (dis-)charging power and Pnom
bs the nominal power. The
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Figure 3.20: Mean battery energy and power capacities in comparison with se-
lected studies.

state of energy at the beginning and end of each simulated day is set to
1
2 Cbs.

3.4.5 Critical Reflection

As for the other flexibility options, we want to discuss the input data
and modelling assumptions, their limitations and their influence on the
results.

Input Data

In Fig. 3.20, we compare the obtained mean values for energy and power
capacity per BESS with the values used in the German network development
plan [17], a recent study on household flexibility (evaluated for the years
2022 and 2035) [141] and a study comprising empirical data (evaluated for
the year 2018) [142]. The values are in good accordance with the investigated
literature values, especially when considering the trend for increasing
capacities in the future [141].

In our studies, battery storage is always sized relative to PV systems. While
this is a reasonable assumption, the values might differ and vary in reality.
When accounting for differences in relative size, some of the BESS might
be full earlier than others and the total flexibility potential consequently
lower.

Furthermore, we do not account for the influence of possible policy mea-
sures. Their influence is clearly visible in the input data for the size of PV
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systems in Fig. 3.18. There are peaks for sizes below 1 kW and 10 kW. These
are caused by regulations that apply for PV systems with sizes larger than
1 kW and 10 kW. To avoid the more complex rules, customers choose PV
systems sizes accordingly. It can thus be assumed that if other regulations
come into place, the sizes of both PV systems and connected BESS might
change accordingly. While these effects are out of scope for this thesis, it
would be interesting to investigate the interplay with political incentives in
future research.

Modelling Assumptions

We choose a relatively simple static model for battery storage to limit the
complexity. First, the efficiency is modelled by a fixed value. In reality, the
efficiency also depends on the charging power. While this introduces inaccu-
racies, these are acceptable for our large-scale investigations. Furthermore,
no aging is implemented. The available flexibility is therefore overestimated
since the available battery capacity decreases with time and the number of
cycles.

Another strong assumption is that the full battery capacity is available for
the flexibility service at hand. This allows us to investigate the maximum
potential of BESS to reduce the stress in the distribution grid and balance
supply and demand on a system level. However, in reality, only a limited
share of the battery storage might be available for these services if there are
also other objectives of the customer, e.g. increasing PV self-consumption
or limiting battery ageing.



4
F L E X I B I L I T Y P O T E N T I A L O F D E C E N T R A L I S E D
F L E X I B I L I T Y O P T I O N S

In the introduction of this thesis, a rough estimation of the power and en-
ergy capacities being introduced into the German system by decentralised
flexibility options was provided (see Fig. 1.2). It shows that with increasing
shares of decentralised flexibility options (DFOs), massive amounts of stor-
age are introduced to the system. However, these are not always available
for EVs and HPs. EVs are not always connected to the grid since their main
purpose is to provide mobility and not all parking opportunities offer charg-
ing infrastructure. HPs, on the other hand, show a high seasonality in heat
demand, which also influences the energy available for shifting [143].

In this chapter, we want to approximate the flexibility from DFOs that can
be used for different flexibility services. Therefore, we determine the flexible
energy and available power within the six different distribution grids for
a 100 % penetration of DERs and provide an estimate for entire Germany.
We thereby account for the temporal availability of EVs and HPs and the
different levels of flexibility described in the previous chapter.

The remainder of the chapter is structured as follows. Section 4.1 introduces
the method for estimating the flexibility potential. Section 4.2 introduces
the case study, including investigated numbers of DFOs and the different
levels of flexibility. In Section 4.3, the results are presented and discussed.
Lastly, Section 4.4 draws conclusions.

4.1 methodology - estimation of flexibility potential

To estimate the flexibility potential within the grids, we use the concept of
flexibility envelopes, introduced in Section 3.2.6. It is applied to estimate
the available power (difference between maximum and minimum power
bounds), further detailed in Section 4.1.1, and the available flexible energy
(difference between maximum and minimum energy bounds), further de-
tailed in Section 4.1.2. Figure 4.1 displays the principal concepts for the
estimation of the flexibility potential of the different DFOs and flexibility

101
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levels, described in more detail in the following sections. For simplification,
we assume ideal storage units, i.e. 100 % efficiency for BESS and TES.

4.1.1 Available Power

We define the available power APd f o,t as the difference between maximum
and minimum power values (Pd f o,t and Pd f o,t), that a DFO can take at a
certain time step if the component is connected to the power system:

APd f o,t = Pd f o,t − Pd f o,t ∀ d f o ∈ {BESS, EV, HP}, t ∈ T. (4.1)

If the component is not connected to the power system (e.g. an EV while
driving), the available power is zero APd f o,t = 0.

For EVs, the power bounds depend on the modelling assumptions (see
Section 3.2.6). If V2G is not available, the lower power bound is always
zero. In case of V2G, on the other hand, the lower power bound is equal to
the negative upper power bound (see Fig. 4.1 - upper left, lower subplot).
The upper power bound depends on whether the EV is parked and on
the charging location. For parking events where the EV was originally
scheduled to charge, the upper power bound is limited by the maximum
powers of the EV and the charging infrastructure. In driving sessions, the
upper power is always zero since the EV is not connected to the grid in
these times. Similarly, if the EV is parked but no charging infrastructure
is available, the upper power is always zero. A difference between the
investigated levels of EV flexibility (see Tab. 3.10) occurs for parking sessions
where charging infrastructure is available but the EV was not originally
scheduled to charge. If only shifting within the charging sessions is allowed
(i.e. for EVs Flex+ and EVs Flex - upper subplot in Fig. 4.1 upper left), the
upper power bound is zero in these parking sessions. Conversely, if shifting
between different charging sessions is allowed (i.e. for EVs Flex++ and EVs
V2G - lower subplot in Fig. 4.1 upper left), the upper power bound is limited
by the maximum power of the EV and the charging infrastructure.

The upper power of HPs is calculated assuming that the TES is empty and
filled as far as possible within the given time step in addition to the thermal
heat demand of that time step PD,th

hp,t . Furthermore, it is assumed that the

TES is only filled to a level ETES
hp,t that can be emptied within 24 hours. This

additional constraint is added to avoid unrealistically high flexibility in
summer when heat consumption is low. The maximum electrical power of
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Figure 4.1: Concept for the estimation of the flexibility potential of EVs, HPs and
BESS. Note that the energy levels and charging powers for EVs are
displayed for a charging station for EVs Flex and EVs Flex+ and for
an individual EV for EVs Flex++ and EVs V2G. The charging sessions
are thus not aligned in these cases.
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the HP PHP,el
hp,t is additionally constrained by the installed thermal power of

the heat pump Pnom,th
hp :

PHP,el
hp,t = min

 Pnom,th
hp

COPhp,t
,

ETES
hp,t /∆t + PD,th

hp,t

COPhp,t

 ∀ hp ∈ HP, t ∈ T, (4.2)

ETES
hp,t = min

(
CTES

hp ,
t+25

∑
t1=t+1

PD,th
hp,t1

)
∀ hp ∈ HP, t ∈ T, (4.3)

where COPhp,t is the coefficient of performance of the HP. In winter with
high heat consumption, the installed capacity of the HP is the constraining
factor (as displayed in Fig. 4.1 - upper center).

The minimum bound PHP,el
hp,t describes a situation where the TES is filled and

supplies the thermal demand PD,th
hp,t as far as possible. Again, we assume that

the storage is only filled to a level ETES
hp,t that can be used in the following 24

hours:

PHP,el
hp,t = max

0,
PD,th

hp,t − ETES
hp,t /∆t

COPhp,t

 ∀hp ∈ HP, t ∈ T, (4.4)

where COPhp,t is the coefficient of performance of the HP, and ∆t is the
time increment of the calculation (one hour in our investigations). The
underlying assumption is that the TES can supply its full capacity within
that time horizon. An additional constraint would have to be included for
shorter temporal resolutions that limits the thermal power of the TES.

Battery storage has no temporal restrictions on the available power. Both
upper and lower limits are thereby constrained by the nominal power
capacity of the battery since discharging is allowed to the same extent as
charging (see Fig. 4.1 - upper right).

4.1.2 Flexible Energy

Similar to the available power, we define the flexible energy FEd f o,t as
the difference between maximum and minimum energy values (Ed f o,t and
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Ed f o,t), that a DFO d f o can take at a certain time step if the component is
connected to the power system:

FEd f o,t = Ed f o,t − Ed f o,t ∀ d f o ∈ {BESS, EV, HP}, t ∈ T. (4.5)

Again, the flexible energy is zero FEd f o,t = 0 if the component is not
connected to the power system since the flexibility is unavailable at these
times. This is the case for EVs that are driving or parking in locations where
no charging infrastructure is available. In Fig. 4.1 (left), this effect can be
observed for EVs Flex++ and EVs V2G Monday around noon to Tuesday
morning.

The upper bound of the cumulative energy consumption of EVs is obtained
by simulating a charging behaviour to charge as early as possible. For EVs
Flex and EVs Flex+, this means charging at nominal power at the beginning
of the charging session until the originally scheduled charging demand of
that session is met. For EVs Flex++ and EVs V2G, it means that after each
driving event, the first opportunity is used to recharge the EV battery fully.
Conversely, the lower bound reflects a behaviour where EVs charge as late
as possible, always charging just enough to make the next trip without
violating a minimum state of charge in case of EVs Flex++ and EVs V2G.
For EVs Flex and EVs Flex+, the lower bound is obtained by charging the
originally scheduled amount at the end of the charging session at nominal
charging capacity. For further details, see Section 3.2.6.

For HPs, the TES provides flexibility to shift the heat demand. To estimate
the flexible energy available to the power system, we calculate the thermal
flexible energy (i.e. maximum minus minimum cumulative thermal energy
consumption) for every time step and divide it by the COP. The maximum
cumulative energy consumption translates into a consumption as early
as possible and the minimum cumulative energy consumption as late as
possible. For the minimum cumulative thermal energy consumption, the
TES would thus be emptied initially supplying the heat demand of the
initial time steps, and the thermal demand would be directly supplied by
the HP in the subsequent time steps. Similarly, for the maximum cumulative
thermal energy consumption, the TES would be filled in the beginning to
achieve a higher consumption at the start. In the subsequent time steps after
the TES is fully charged, the thermal heat demand would also be directly
supplied by the HP. Again, we assume that the TES is only filled to a level
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that can be consumed within 24 hours. If losses of the TES were accounted
for, these would be added to the upper energy band.

As described, consuming as early as possible and consuming as late as
possible lead to the same behaviour of directly supplying the heat demand
with the HP after the initial phase of filling, respectively emptying, the TES.
After these first time steps, the thermal available flexible energy (i.e. the
difference between upper and lower energy bound) is therefore equal to the
energy level of the TES in the previous time step ETES

hp,t−1 as defined in (4.3)1.

Since we are interested in the electrical available flexible energy FEHP,el
hp,t , the

thermal value is adjusted by the coefficient of performance COPhp,t:

FEHP,el
hp,t = EHP,el

hp,t − EHP,el
hp,t =

ETES
hp,t−1

COPhp,t
∀hp ∈ HP, t ∈ T, (4.6)

where EHP,el
hp,t and EHP,el

hp,t are the upper and lower energy bands of the heat
pump. In winter with high heat demand, the thermal capacity of the TES
is the constraining factor, and the thermal available energy is constant
(as displayed in Fig. 4.1 - upper center). On the other hand, the energy
consumption of the previous 24 hours (determining the energy level of the
TES) is limiting in summer, leading to a variation in thermal flexible energy
in these times.

Like the available power, the flexible energy of BESS is always available
and has no temporal restrictions. The flexible energy of a BESS is therefore
equal to its energy capacity CBS

bs (see Fig. 4.1 - upper right).

4.2 case study - 100 % der penetration

We want to estimate the absolute flexibility potential for the six investigated
distribution grids in case of 100 % DER penetration, i.e. every residential
load owns a home charging station, a HP with TES and PV system with
battery storage. Since we assume that in future renewable power systems
PHEVs will not play a significant role [144], only BEVs are considered
in this investigation. The resulting values for the numbers, aggregated
power and energy capacities, and electricity consumption of the integrated
DFOs are summarised in Table 4.1. All values are obtained following the

1 For the following investigations, we assume a settled operation, i.e. do not account for the
initial time steps of filling, respectively emptying, the TES.
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Table 4.1: Number, installed power and energy capacities of DFOs in the six
investigated grids at 100 % DER penetration.

Number [-] Power Capa- Energy Capa- Electricity Con-
city [MW] city [MWh] sumption [MWh]

EVs 128 520 1495.2 7901.6 292 340.5
HPs 31 518 173.9 560.8∗ 179 491.1
BESS 31 518 165.1 275.2 -
∗The energy capacity for HPs is the thermal capacity of the TES in the HPs Flex scenario.

Table 4.2: Extrapolated number, installed power and energy capacities of DFOs
in Germany at 100 % DER penetration.

Number Power Capa- Energy Capa- Electricity Con-
[Mio.] city [GW] city [GWh] sumption [TWh]

EVs 48.8 567.8 3000.2 111.0
HPs 19.4 107.0 345.2∗ 110.5
BESS 19.4 101.6 169.4 -
∗The energy capacity for HPs is the thermal capacity of the TES in the HPs Flex scenario.

modelling assumptions introduced in the previous chapter (see Section 3.2
for EVs, Section 3.3 for HPs and Section 3.4 for BESS).

For the extrapolation for entire Germany, we scale the numbers such that
48.8 Mio.2 EVs and 19.4 Mio.3 HPs and PV systems with BESS are present
in the system. The resulting power and energy capacities, and electricity
consumption are displayed in Table 4.2.

The flexibility potential is calculated for the different levels of EV and HP
flexibility, introduced in Sections 3.2.4 and 3.3.4, and a battery scenario with
standard sizing of BESS as explained in 3.4.1, denoted as Battery in the
following. For clarity, the most important assumptions for the different
scenarios are briefly summarised in the following.

2 Number of private cars in Germany at the beginning of 2023 [112].
3 Number of residential buildings in Germany in 2021 [145].
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evs flex & evs flex+: For these lower levels of EV flexibility, only shift-
ing within the originally scheduled charging session is allowed. For
EVs Flex, only charging at home and work charging stations is as-
sumed to be flexible. For EVs Flex+, public charging is additionally
assumed flexible.

evs flex++ & evs v2g : For these higher levels of EV flexibility, shifting
between different charging sessions is allowed (as long as charging
infrastructure is present), even if not charging demand was originally
scheduled in some of these sessions. For this, charging at home, work
and public charging stations is assumed flexible. This charging use
case including all charging sessions with available charging infrastruc-
ture will be denoted as extended in the following. For EVs Flex++, only
unidirectional charging is allowed while for EVs V2G, discharging of
the EVs is possible.

hps flex , hps flex+ & hps flex++: In all HP scenarios, each HP is
equipped with a TES. The size of TES varies between the investigated
levels of flexibility. In HPs Flex, the TES is sized to supply the two
hours of highest consecutive heat demand, resulting in a mean thermal
energy capacity of 18.3 kWh. For HPs Flex+ and HPs Flex++, the size
of the TES is doubled and quadrupled.

battery : Batteries are sized according to the PV system with which they
are installed. These are scaled according to recent sales statistics. The
resulting mean power and energy capacities for batteries amount to
5.2 kW and 8.7 kWh.

4.3 results and discussion

We present the flexibility potential of DFOs along their temporal availability
(over the year), their aggregated potential in the investigated distribution
grids, appliance-specific and extrapolated values for entire Germany in the
following.

4.3.1 Flexibility Potential over the Year

We first present the available power and flexible energy over the year for
EVs and HPs. These results are only presented for EVs and HPs since BESS
are always available for flexibility services in our investigations. While the
real available power and flexible energy of BESS are dependent on the
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Figure 4.2: Available power of flexible EVs over time of day and day of year
relative to the installed charging capacity.

temperature and consequently also on the time, we do not model battery
storage in sufficient detail to account for these effects. However, they are
assumed to be small in comparison with the changing availability of EVs
and HPs and therefore not considered.

The available power and flexible energy of EVs depend on the time of the
day and considered charging use cases. Figure 4.2 displays the available
power in percent of installed charging capacity for home, work, public
charging and the extended case. For home, work and public charging,
only parking sessions are included when the EV is originally scheduled to
charge (i.e., not allowing shifting between standing times in EVs Flex and
EVs Flex+). In the extended case, all charging use cases (i.e. home, work
and public) and parking events when the EV is plugged in are considered
(to account for shifting between standing times in EVs Flex++ and EVs
V2G).

The relative available power for home charging is highest at night and
shows low values during the day. For work charging, the opposite is the
case. Public and extended charging combine both, showing a more evenly
distributed availability, where public charging still shows lower values
during the day. The mean available powers relative to installed charging
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Figure 4.3: Available power of EVs over time of day and day of year for different
levels of flexibility relative to installed charging capacity of all home,
work and public charging stations.

capacity are 35.8 %, 10.6 %, 50.5 % and 57.2 % for home, work, public and
extended charging. The installed charging capacities differ, with 489.2 MW,
633.6 MW and 306.1 MW of home, work and public charging stations and
extended charging being the combination of the other three charging use
cases.

Combining the different charging use cases for the investigated levels of
flexibility leads to the distribution in Fig. 4.3, displaying the available power
relative to the installed charging capacity of all home, work and public
charging stations over the day of year and hour of the day. For EVs Flex, the
highest available power occurs in the mornings, which can be explained
by the higher installed charging capacities for work charging. On the other
hand, the available power is similarly high in the mornings and at night
when including public charging stations in scenario EVs Flex+ since the
available power is higher at night for public charging (see Fig. 4.2). For EVs
Flex++, the available power significantly increases since parking sessions
where charging did not originally occur are included. Furthermore, the
available power is always relatively high, showing the minimum values in
the mornings when many cars travel to work and in the late afternoon when
driving home. The mean available powers relative to the installed capacity
of all home, work and public charging stations are 16.1 %, 26.4 % and 57.2 %
for EVs Flex, EVs Flex+ and EVs Flex++. For EVs V2G, the available power
would be double that of EVs Flex++ since negative charging powers of the
same magnitude are allowed in this case.

The flexible energy relative to total battery capacity of EVs is displayed
for the scenarios EVs Flex, EVs Flex+ and EVs Flex++ in Fig. 4.4. For EVs
V2G, the values are the same as for EVs Flex++. For the scenarios EVs
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Figure 4.4: Flexible energy of EVs over time of day and day of year for different
levels of flexibility relative to total battery capacity of the EVs.

Flex and EVs Flex+, the highest relative values occur at night and the
lowest in the early morning (around 7:00) and in the late afternoon (around
17:00). These are the times when most vehicles are driving and therefore
unavailable for shifting. The higher flexible energy at night is in contrast to
the highest available power in the mornings (see Fig. 4.3). This indicates that
the charging powers are higher at work but more of the charging demand
is charged at home. Scenario EVs Flex++ shows a more even distribution
for the flexible energy during the day but also lower values than at night.
The mean flexible energy relative to total EV battery capacity drastically
increases when allowing shifting over standing times, from 1.5 % and 2.6 %
for EVs Flex and EVs Flex+ to 32.5 % for EVs Flex++ (and EVs V2G).

Figure 4.5 shows the available power relative to installed HP capacity (top)
and the flexible energy in percent of thermal storage capacity of the TES
divided by the minimum COP (bottom). Both show very similar patterns
over the year, and the relative values for available power are independent
of the level of flexibility. The available power is therefore only displayed
once, while the flexible energy is differentiated for the different levels of
flexibility. Both available power and flexible energy show the highest values
in winter and tend to be higher during the night. The relative flexible energy
during summer decreases with an increasing size of the TES. In these times,
the thermal demand is low and therefore constrains the flexible energy
(ETES

hp,t < CTES
hp ). The average available power equals to 56.5 %. The mean

flexible energy amounts to 54.1 %, 46.8 % and 39.8 % for HPs Flex, HPs Flex+
and HPs Flex++. While the relative values for flexible energy decrease with
increasing flexibility level, the absolute values increase since the reference
value is doubled and quadrupled in HPs Flex+ and HPs Flex++ relative to
HPs Flex. The decrease in relative flexible energy can be explained by the
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Figure 4.5: Available power relative to installed capacity (top) and flexible energy
relative to storage capacity (bottom) of HPs over time of day and day
of year.

fact that with increasing TES size, the flexible energy is constrained more
often by the heat consumption, i.e. when ETES

hp,t < CTES
hp .

The general pattern of flexibility potential is in accordance with a previous
study investigating the flexibility potential of a residential HP pool [143].
The study also showed longer periods in summer with close to no flexibility
and higher flexibility in winter. In another study, the possible power devia-
tion of a building with both EV and HP proved to be higher at night [146],
which our results also indicate.

4.3.2 Flexibility Potential of Investigated Distribution Grids

Next, we determine the absolute flexibility potential in the investigated
distribution grids for the different flexibility scenarios in case of a 100 %
DER penetration, i.e. every residential load owns a HP, BESS and home
charging station. The work and public charging infrastructure is scaled
proportionally to the number of home charging stations. Figure 4.6 displays
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Figure 4.6: Mean available power in the investigated distribution grids with a
100 % DER penetration.

the mean available power over the year for the investigated distribution
grids and scenarios. The results show that the available power is highest
for the EV scenarios, followed by BESS and HPs in all of the grids. There
is a large variance between the grids, with the largest values (PV-2) being
3.1 to 3.7 times as high as the smallest values (Load-2). This is because
the grid Load-2 is mainly industrial, and the investigated flexibility is
that of households and private EVs. Batteries and EVs using V2G allow
discharging into the grid. Therefore, Battery and EVs V2G display negative
power values as the only scenarios.

The differences in mean flexible energy, displayed in Fig. 4.7, show even
higher differences. Since the flexible energy for EVs Flex++ and EVs V2G is
much higher than for the other scenarios, the values are displayed separately
on the right. While these two EV scenarios show by far the highest values,
HPs Flex++ shows the highest values for the remaining scenarios. Again, the
values vary between the different grids, with factors between the highest
and lowest value per scenario ranging between 3.0 and 3.7.

The differences between the distribution grids mainly depend on the num-
ber of components. Figures 4.8 and 4.9 therefore display the mean available
power and average flexible energy for individual components, i.e. per EV in
the scenarios including EVs and per residential load for HPs and BESS. The
black lines indicate the standard deviation between the investigated grids.
For HPs and BESS, the observed differences mainly stem from the random
choice of their size (see Sections 3.3.2 and 3.4.1). For EVs, additionally the
driving behaviour and available charging infrastructure differs (see Sections
3.2.1 and 3.2.2). Overall, the differences prove to be small and the values in
the same range for all investigated grids.
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Figure 4.7: Mean flexible energy of the hourly profiles in the investigated distri-
bution grids with a 100 % DER penetration.

The values for mean available power and average flexible energy are highest
for EVs at higher levels of flexibility (i.e. EVs Flex++ and EVs V2G) with
6.6 kW per vehicle. However, the temporal availability varies over the day
(see Fig. 4.2). Battery storage offers a mean available power of 5.2 kW (both
charging and discharging) without temporal restrictions. Heat pumps offer
a mean of 3.5 kW available power but with a high seasonal variability
(see Fig. 4.5). EVs at lower flexibility levels (i.e. EVs Flex and EVs Flex+)
display the lowest values with 1.9 kW and 3.1 kW. However, these require
much lower coordination between the EVs and less interference with user
behaviour than the higher levels of EV flexibility. They might therefore be
easier to harness than the flexibility requiring shifting between standing
times.

The mean flexible energy is highest for EVs when allowing shifting between
standing times (i.e. for EVs Flex++ and EVs V2G) with 28.1 kWh. As a
comparison, the mean size of the battery for the simulated EVs is 86.5 kWh.
HPs show values between 4.1 - 12.1 kWh for the differently sized TES in
the scenarios. BESS are roughly in the same range with 8.7 kWh. When
not allowing shifting between standing times, the flexible energy from EVs
shows relatively low values of 1.3 kWh and 2.3 kWh for EVs Flex and EVs
Flex+.
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Figure 4.8: Mean available power per component, i.e. for an individual EV, HP
or BESS.
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Extrapolation for Entire Germany

In the last step, we extrapolate the flexibility potential for entire Germany
for a 100 % DER penetration, i.e. 48.8 Mio. EVs and 19.4 Mio. HPs and BESS.
We therefore use the mean values from Fig. 4.8 and Fig. 4.9 and scale them
with the number of EVs, HPs and BESS to estimate the flexibility potential
for entire Germany in the different flexibility scenarios. The obtained values
only give a rough idea of the flexibility potential for 100 % DER penetra-
tion since all components of the six grids are scaled linearly. For a more
representative study, more grids should be included and a more realistic
scaling undertaken (e.g. using the number of represented grids during the
clustering and updated grids from [98]). Furthermore, it is the maximum
potential without accounting for possible grid constraints that will likely
occur at high DER penetrations.

The mean available power of EVs equals 92 GW, 150 GW and 325 GW for
EVs Flex, EVs Flex+ and EVs Flex++. For EVs V2G, the same values are
available for charging (+325 GW) and discharging (-325 GW). The available
power of HPs is mainly constrained by the installed HP capacity and daily
heat demand. We do not vary these values in the scenarios, and therefore
the available power is relatively constant at 67 GW. The available power
for residential BESS is 102 GW, again available for charging (+102 GW) and
discharging (-102 GW). These values are in a similar order of magnitude
as in a recent study that estimated the installed capacity of decentralised
flexibility options at ∼500 GW in 2045, with the largest share from EVs [147].
Another study estimated the installed capacities by 2035 with ∼330 GW
for EV charging infrastructure, and respectively ∼50 GW for HPs and
BESS [141]. While they accounted for lower numbers of EVs, HPs and
BESSs (roughly ∼32 Mio. EVs, ∼9 Mio. HPs and ∼13 Mio. BESS), they did
not consider the availability, thus showing similar power values for EVs
and HPs but lower ones for BESS.

The estimated mean flexible energy is by far highest for EVs when allowing
shifting between standing times (i.e. for EVs Flex++ and EVs V2G) with
1371 GWh. HPs show values of 81 GWh, 140 GWh and 239 GWh for the
differently sized TES in the scenarios HPs Flex, HPs Flex+ and HPs Flex++.
BESS are in a similar range with 169 GWh. When limiting the shifting to
the originally scheduled charging session, the flexible energy from EVs
shows lower values of 61 GWh and 109 GWh for EVs Flex and EVs Flex+.
The flexibility potential thus strongly depends on the level of flexibility
for EVs and HPs. The temporal availability reduces the available flexibility
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compared to only accounting for installed power and energy capacity
(e.g. [141], [147]) and should therefore be considered.

Comparing the estimated values with currently installed storage capacities
from [21], both power and energy capacity would be drastically increased.
The current power capacity amounts to 13 GW, 7 GW being battery storage
and 6 GW pumped hydro storage (PHS) [21]. The estimated HP power
is roughly five times as high as the current power capacity. However, it
has to be mentioned that HPs only draw power from the grid, while the
reference storage technologies allow charging and discharging. BESS show
even higher values of eight-fold the reference storage capacities, allowing
both charging and discharging like the other storage technologies. The
highest increase in power capacity is observed by EVs at high levels of
flexibility. The four investigated levels of flexibility amount to seven, twelve
and twenty-five times the reference storage capacities. The higher flexibility
scenarios EVs Flex++ and EVs V2G lead to the same values (twenty-five-
fold) but EVs V2G allows a discharging back into the grid. In contrast, all
other scenarios only account for smart charging.

The energy capacity currently installed in Germany is 35 GWh, 11 GWh
stemming from battery storage and 24 GWh from PHS [21]. The estimated
flexible energy of HPs is double, four and seven times as high for the three
investigated levels of flexibility. The BESS energy capacity is five times
as high as the current storage capacities, and the flexible energy of EVs
amounts to double, triple and thirty-nine times the current values. While
both power and energy are multiples of the currently installed storage
capacities, it should be considered that leveraging decentralised flexibility
is much more complex than that of the central storage units. These are
directly integrated into the market, and their primary purpose is to provide
flexibility. The investigated DFOs, on the other side, are distributed in the
system and much larger in their number but smaller in the capacities of
individual units. The usable flexibility is therefore likely lower than for the
central units, and the large number of assets is more difficult to coordinate
than a few large ones. Furthermore, the primary goal of households is not
to provide system services but to meet other needs, such as mobility or
heating.

The provided numbers therefore only give a rough estimation of flexibility
and constitute an upper bound. A potential use case is the provision of
flexibility to overlying grid levels either for load levelling in the market
or grid services like redispatch. The larger the range of energy and power
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values that the DFOs has available, the higher the potential to provide
these flexibility services. However, the displayed values do not consider
the location or grid constraints, only the temporal availability of EVs and
HPs.

While the available flexible energy reasonably estimates the potential maxi-
mum shiftable energy, it usually cannot be fully exploited. In reality, the
value is significantly lower because perfect foresight in the future would be
necessary to reach these extreme values. Additionally, EV owners would
most probably not be willing to fully discharge their EVs to provide grid
flexibility. Furthermore, if flexibility is analysed in the EVs Flex++ and
EVs V2G scenarios, the load shifting required to achieve such flexibility
spans over longer periods. For the charging in EVs Flex and EVs Flex+,
flexibility provision is limited to one charging event without influencing the
later operation. Thus, the different scenarios cannot be compared directly,
and the displayed values are rather used to give an idea of the order of
magnitude of the available flexibility. Shifting heat demand with a TES and
electricity demand with BESS, on the other side, should not compromise
user comfort since the original consumption is not altered. However, for all
investigated flexibility options, the right incentives would have to be given
to consumers, and intelligent management would be necessary to use the
available flexibility.

4.4 conclusion

We approximated the flexibility potential of residential EVs, HPs and BESS
in terms of available power and flexible energy. To this end, we investigated
the mean values per component and the temporal availability. Lastly, we
determined the flexibility potential in the investigated distribution grids for
100 % DER penetration and provided an estimate for entire Germany.

The flexibility potential that decentralised flexibility options could provide
is immense. However, it also depends on the assumed level of flexibility
of the component and is time-dependent for EVs and HPs. For both, the
flexibility potential is higher at night, and HPs show a strong seasonal
pattern with higher values in winter.

Broken down to individual appliances, the mean available power ranges
between 1.9 - 6.6 kW and average flexible energy between 1.3 - 28.1 kWh.
Both are highest for EVs if shifting between standing times is allowed.
On the other hand, if the charging demand is only shifted within the
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originally scheduled session, both flexibility indicators show the lowest
values for EVs between the investigated technologies. For available power,
BESS show higher values than HPs, independent of the modelled levels of
HP flexibility. For the flexible energy, on the other hand, HPs equipped with
a TES allowing eight hours of shifting (highest modelled level of flexibility)
show higher values than battery storage.

The flexibility potential within the investigated grids varies by a factor
of up to 3.7. It thereby mainly depends on the number of residential
loads and integrated EVs. The extrapolation to entire Germany shows that
the available power and flexible energy of the investigated decentralised
flexibility options are drastically higher than the currently installed power
and energy capacities of storage technologies in the system. The power
values range between five- to twenty-five-fold. The energy values even reach
between two- to thirty-nine-fold. Both show the highest values for EVs at
high levels of flexibility. While these numbers prove the huge potential
of decentralised flexibility options, they constitute the upper bound for
flexibility, not accounting for many constraining factors like uncertainties,
user preferences and grid constraints.

Furthermore, the value of flexibility largely depends on the use case. In the
remaining parts of the thesis, we therefore investigate two concrete use cases:
limiting the stress on distribution grids and thus reducing reinforcement
needs in Part II and helping balance supply and demand in renewable
power systems in Part III.





Part II

G E O G R A P H I C F L E X I B I L I T Y N E E D S I N
D I S T R I B U T I O N G R I D S





5
M O T I VAT I O N A N D R E L AT E D W O R K

5.1 introduction

The energy system is undergoing a massive transition to achieve the climate
targets that the international community has agreed upon [25]. Next to
the shift in the power supply towards renewable energy sources (RES),
there are also attempts to decarbonise the transport and heat sectors by
electrification. This trend leads to growing numbers of electric vehicles (EVs)
and heat pumps (HPs). Many of these technologies are directly connected
to the distribution grids (DGs), leading to increased transport requirements
within these lower grid levels. Additionally, residential photovoltaics (PV)-
systems, which are also connected to the DGs, can lead to reverse power
flows, grid congestion, and voltage issues [148]. Because of these new
challenges, distribution system operators (DSOs) expect a need for grid
reinforcements to accommodate the increasing shares of distributed energy
resource (DER) [149].

On the other side, new consumers and battery energy storage systems
(BESS) that are installed alongside PV can be operated flexibly and therefore
release stress on the grids. If installed within the same grids, flexible EVs
and HPs might even be able to help with the integration of RES. In this part
of the thesis, we want to investigate the potential of a flexible operation of
EVs, HPs and BESS to relieve distribution grids and lower reinforcement
costs.

In Germany, the electricity demand for EV charging is expected to reach
up to 8 % of the total electricity demand in the year 2030 [150]. If all EVs
would charge at the same time, e.g. when arriving at work in the morning,
which is unrealistic but still interesting to consider, the peak demand would
reach 74 GW [151]. This would result in a major increase in the German
peak demand, which reached 79.5 GW in 2020 [151]. On the other hand, the
deployment of EVs will come with massive amounts of storage introduced
into the system since battery sizes of EVs are comparably large. With the
ability of vehicle-to-grid (V2G) operation, meaning discharging back into
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the grid, EVs could thus provide significant flexibility to the system. In
a first case study, we therefore focus on the integration of EVs and the
influence of different charging strategies on grid issues, reinforcement
needs and flexibility potential in Chapter 7.

In a second case study in Chapter 8, we investigate the influence of increas-
ing penetrations of EVs, HPs and PV systems with and without BESS. Again,
we estimate the potential of a flexible operation to reduce the necessary
reinforcement costs. We thereby investigate the uptake of each technology
individually and compare it with a simultaneous integration of all inves-
tigated DERs. This comparison allows us to determine the cost driving
factors and to better understand the interplay of different DERs.

5.2 background

There have been numerous studies on the grid integration of DERs. This
section gives an overview over existing work and puts the contributions
of this thesis into perspective. Section 5.2.1 thereby focuses on the inte-
gration of EVs with different charging strategies and Section 5.2.2 on the
simultaneous integration of DERs.

5.2.1 Integration of Electric Vehicles

As an overview of existing studies, Table 5.1 summarises selected studies
on the grid integration of EVs, which voltage levels (high voltage (HV),
medium voltage (MV), low voltage (LV)) are covered in the study, whether
curtailment and grid reinforcement are evaluated and which EV charging
strategies are considered (rule-based, smart charging without and with
V2G).

In a case study on individual MV- and LV-grids from Germany, Sweden,
Spain, Portugal and Italy, the authors investigated the grid impacts of
different EV charging strategies on the grids [95]. They found that most
investigated MV grids had a lower EV hosting capacity than the LV grids,
where sub-urban and rural grids showed higher restrictions to accommo-
date EV charging stations than urban ones. They found a reduction in grid
reinforcement by a rule-based reduced charging strategy of 60 % and by
real-time smart charging by even 95 % compared to uncontrolled charging.
Another study compared two smart charging strategies of a work charging
park within an industrial 37-bus MV distribution grid [152]. In one strategy,
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Table 5.1: Overview on existing studies on the grid integration of EVs

Voltage
Level

Grid
Reinf. Curt. EVs Rule EVs Smart EVs V2G Ref.

MV & LV ✓ ✗ ✓ ✓ ✗ [95]
MV ✗ ✗ ✗ ✓ ✓ [152]
MV ✗ ✗ ✗ ✓ ✓ [153]
MV ✓ ✗ ✗ ✓ ✓ [154]
LV ✓ ✗ ✗ ✓ ✓ [155]
LV ✗ ✗ ✓ ✓ ✗ [96]

MV & LV ✗ ✓ ✗ ✓ ✗ [23]
LV ✗ ✓ ✓ ✓ ✗ [156]

MV & LV ✓ ✓ ✓ ✓ ✓
This
work

the charging costs were minimized, while the other minimised the peak-to-
average ratio of the charging. While the first strategy naturally resulted in
lower charging cost, only 10 % EV penetration could be achieved with the
existing grid infrastructure in case of slow and 0 % in case of fast charging.
The second strategy increased the integrated share to 60 % in both cases.
Similarly, the hosting capacities of the industrial IEEE 38-bus test system
for coordinated work charging was assessed in [153]. The authors investi-
gated the integration of workplace charging and applied a particle swarm
optimisation to coordinate smart charging and V2G. With the optimised
charging, all 800 modelled EVs could be incorporated without congestion,
reducing total operational costs and improving the state of charge (SoC) at
departure as well as losses.

In another study on the MV IEEE 33-bus test system, an optimised V2G
operation achieved an 82 % reduction of the grid reinforcement costs com-
pared to the case without V2G [154]. In [155], the authors investigated the
potential of smart charging with and without V2G to reduce CO2-emissions
and charging costs and whether grid reinforcement makes sense from an
economic and emissions point of view. They found that the charging costs
could be reduced by a maximum of 23 % by unidirectional smart charging
(no V2G) and by 32 % with V2G compared to uncoordinated charging. How-
ever, if only optimising for costs, the emissions partly increased. Transformer
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reinforcement had positive effects on costs and emissions when leveraging
V2G. For unidirectional smart charging, the additional gained flexibility
did not compensate for the supplementary costs and emissions.

In a study on representative rural and urban LV-grids in Germany, the
influence of EV integration with different charging strategies on grid issues
was investigated [96]. The results showed that rural grids are more affected
and that market-based charging leads to high peak loads and stress on
the grids. A reduced charging strategy, on the other hand, can reduce
the stress on the grids significantly. In another study on representative
German MV grids with underlying LV grids, the authors investigated the
influence of market-based EV charging on curtailment needs within the
distribution grids [23]. They found that market-based charging increased
load-driven curtailment and slightly decreased feed-in-driven curtailment,
mainly caused by PV. Overall, the influence on feed-in-dominated, rural
and suburban grids was moderate, but there was a significant increase in
grid issues in urban grids.

In [157], the authors investigated the value of smart charging and time-of-
use charging to lower grid costs and curtailment in California by integrating
EV charging with different strategies into a power sector dispatch model.
They found that overnight charging induced by a time-of-use scheme
lowers grid costs but increases curtailment of RES. A study on DGs in the
Netherlands assessed the influence of grid-supportive charging to minimise
peak load and market-based charging to minimise charging costs [158]. The
authors therefore formulated optimisation problems following different
objectives for 25 typical driving profiles. In the price-based scenario, the
authors found a strong influence of wind feed-in on the price, which could
lead to a high simultaneity of EV charging, causing an increase in peak
load.

While many aspects of the grid integration of EVs were covered, like grid
reinforcement [95], [154], [155] and curtailment needs [23], none of the
presented studies covers both at the same time. However, these two values
allow insights into different dimensions of the grid integration of DERs.
Grid reinforcement is the conventional way of dealing with grid issues and
therefore a good measure to estimate the costs for integrating EVs with
different charging strategies. At the same time, grid reinforcement needs
depend only on the highest occurring grid issue per component, i.e. very
short periods. Some of them could therefore be solved with relatively small
measures, like it is currently done in Germany for smaller PV units. Since
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they cannot be directly controlled by the DSO in case of emergency, they
have to limit the feed-in peaks to 70 % of their nominal capacity. To this
end, the curtailment needs allow a more detailed investigation of when,
how severe and how long the DSO would have to enact countermeasures
to solve the arising grid issues. Of course, it is also an option to only
assess the grid issues without a specific solution strategy, like in [96]. It
allows an investigation of the severity and the duration of grid issues.
However, ultimately, the goal is to avoid grid issues and estimate the
required intervention. Therefore, we choose to compare grid reinforcement
and curtailment needs to allow for a more holistic investigation of EV
integration.

Furthermore, while all studies investigate some smart charging, none in-
cludes rule-based charging and the possibility for V2G at the same time.
Our work simulates both to estimate the highest potential of EV flexibil-
ity with V2G and to compare it to simple rule-based approaches. These
are less complex and have a lower need for communication between the
EVs and the DSO and are therefore an attractive alternative to centrally
optimised charging strategies for a real-world application. Lastly, V2G has
only been studied in separate MV or LV grids of relatively small system
sizes. We combine both in large-scale realistic MV grids with underlying
LV grids.

5.2.2 Integration of Distributed Energy Resources

While EVs are especially interesting because of their high charging powers
and storage capacities, future households will likely own more than one
DER at a time. There might be synergies between different DERs, especially
between local PV and new consumers like EVs and HPs. Studying the
combination of EVs, HPs and PV with or without BESS is therefore a
second topic addressed in this part of the thesis. Different studies in the
literature have already worked in a similar direction, of which selected ones
are summarised in Tab. 5.2 and further described below.

In a UK case study, the authors investigated the influence of EVs and HPs
on the grid reinforcement needs in distribution grids [159]. They therefore
simulated three scenarios and found that in all scenarios, there was a
significant growth of electricity load by these appliances which could cause
a high increase of peak load and grid expansion costs when not coordinated.
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Table 5.2: Overview on selected studies on the grid integration of DERs

Voltage
Level EVs HPs PV BESS Smart

Operation
Grid Rein-
forcement Ref.

HV & LV ✓ ✓ ✗ ✗ ✓ ✓ [159]
MV & LV ✓ ✓ ✓ ✓ (✓) ✓ [22]

LV ✓ ✓ ✓ ✓ (✓) ✓ [86]
MV ✓ ✗ ✓ ✓ ✓ ✗ [160]
LV ✓ ✓ ✓ ✓ ✓ ✗ [156]

MV & LV ✓ ✓ ✓ ✓ ✓ ✓
This
work

The smart control however could significantly reduce both peak load and
grid expansion costs in all scenarios.

In a German case study, the authors investigated the effect of new electricity
appliances, i.e. EVs, HPs, combined heat and power (CHP) units and PV
systems with BESS, on the grid reinforcement costs of 113 real MV and LV
grids. They found that there was a significant increase in grid reinforcement
costs, by 145 % in the LV and 33 % in the MV. A market-oriented smart
operation further increased these costs, by 16 % in the LV and 51 % in the
MV. However, they used simultaneity factors for their investigations, which
neglects the fact that the new peaks might not coincide with old ones and
therefore do not necessarily require grid reinforcement. Furthermore, they
investigated the effects of flexible charging but market-driven instead of
grid-friendly.

The authors of a Swiss case study investigated the influence of increasing
penetrations of EVs, HPs and PV on distribution grid reinforcement costs
in LV grids [86]. They used simultaneity factors for the DERs in power
flow calculations to determine grid violations and estimated the resulting
costs for required grid reinforcements in an iterative approach. In their
case studies, they investigated rural, suburban and urban grids. They
found that PV caused more voltage violations, EVs and HPs slightly more
overloading. The costs for required grid reinforcement depended on the
urban setting, with higher costs in rural grids. Overall, the highest costs
occurred for the integration of HPs, followed by EVs and PV. Again, the
costs largely varied between different grids. While the authors gave a good
indication of required grid reinforcements for DERs, they only investigated
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a reference operation of these. Flexibility provision was only accounted for
by additional BESS, which were found to be a cost-effective alternative for
15 % of the transformer reinforcements.

In a case study on eleven distribution grids with characteristics from the
U.S., a central grid-optimised and local cost-optimised operation of DERs
were compared in terms of their grid integration [160]. The authors thereby
considered rooftop PV, stationary BESS, EVs and flexible demand of electric
furnaces, air conditioners and water heaters. They found that the centralised
approach could reduce the violations at transformers from 81 % with the
local scheme to 28 %, and voltage violations from 28 % to 18 % in 2050 with
high DER penetrations. They also found a reduction in peak load. However,
they did not model grid reinforcement explicitly and did not include HPs
in their investigations.

In a study on German LV grids, the influence of high penetrations of PV
systems, EVs, HPs and BESS on grid violations and curtailment needs were
investigated [156]. Without coordination, both load and feed-in needed to
be curtailed to stay within the limits of the grids. Load curtailment could be
avoided entirely by a smart operation of the DERs and PV self consumption
doubled. While all DERs were studied in reference and smart operation,
grid reinforcement was not explicitly modelled and the study was limited
to the LV.

In summary, it was shown in the literature that increasing penetrations of
combined DERs will lead to stress in the distribution grids if uncoordinated.
In many studies, it was found that using the flexibility of EVs, HPs and
battery energy storage systems (BESS), which are installed together with
PV-systems, can reduce issues in the distribution grids and consequently
grid reinforcement costs. However, most of them only considered single
technologies and their flexibility, e.g. [10], [115], [158]. In the studies com-
bining several DERs either not all DERs were included in the analysis [159],
[160], no grid-optimised operation of the DERs was investigated [22], [86]
or no grid reinforcement needs were determined [156]. In contrast, our
study investigates the integration of PV with BESS, HPs and EVs, both
as single components and in a combined scenario to determine the main
drivers of the necessary grid reinforcement costs. Additionally, we study
their effect on different medium voltage (MV)-grids with underlying low
voltage (LV)-grids, where most studies only account for one or the other,
e.g. [86], [156], [160], [161]. In this way, we can analyse the effect of increased
penetrations of DERs and the utilisation of their flexibility on the different



130 motivation and related work

grid levels as it was shown that reinforcement needs occur in both voltage
levels [22].



6
M E T H O D O L O G Y - O P T I M A L P O W E R F L O W
F O R M U L AT I O N

This chapter introduces the optimal power flow formulation used in the following
chapters. It was first introduced in the published paper: A. Heider, K. Helfenbein,
B. Schachler, T. Röpcke and G. Hug, "On the Integration of Electric Vehicles into
German Distribution Grids through Smart Charging", 2022 SEST [115] as part of
this PhD and slightly adapted for this thesis.

We introduce a linear power flow formulation which is applicable to large-
scale distribution grid topologies. Instead of directly integrating grid re-
inforcement, which is intractable for large scale grids, we use a proxy to
mimic a grid-optimised operation of decentralised flexibility options (DFOs).
Therefore, we define a quadratic optimisation of the operation of decen-
tralised flexibility options under consideration of grid constraints with
linearised power flow equations.

Model Formulation

In the following problem set, all variables are denoted by lowercase Arabic
letters, while parameters are denoted by uppercase Arabic or Greek letters.
Sets T, N and B contain all investigated time steps, nodes and branches,
respectively.

The objective contains two elements representing different optimisation
goals. One is to minimise the required curtailment at each node pcurt

n to
keep the power flow on lines and transformers and the voltage within
allowed boundaries. The second is to minimise the component loading lb
for every line and transformer. It is an indirect way of limiting the necessary
grid expansion. This leads to the following objective function:

min δcurt ∑
n∈N

∑
t∈T

pcurt
n,t + δload ∑

b∈B
∑
t∈T

l2
b,t, (6.1)

where δcurt and δload are weighting factors for the two terms. For the follow-
ing investigations, these are set to δcurt = 1 and δload = 10−5.
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The curtailment at every node pcurt
n,t is the weighted sum of curtailment of

inflexible load pcurt,l
t,n , feed-in pcurt, f

t,n and DFOs pcurt,d f o
t,n :

pcurt
n,t = δcurt,l pcurt,l

n,t + δcurt, f pcurt, f
n,t +

δcurt,d f o pcurt,d f o
n,t ∀ n ∈ N, t ∈ T,

(6.2)

where the weighting factors are fixed to δcurt,l = 1, δcurt, f = 0.5 and δcurt,d f o =
0.5 to model a behaviour where the curtailment of feed-in and flexible units
is preferable over the curtailment of conventional load.

The reactive power curtailment qcurt,l
n,t and qcurt, f

n,t are assumed to follow
proportionally, i.e. the power factors of loads and generators stay constant.
As reactive power provision is not the focus of this work, the power factor
is assumed to be cos(ϕ) = 1 for DFOs. The curtailment of active power of
load, DFOs and feed-in at a node are positive and restricted by the nodal
active power of load, DFOs and feed-in at that node.

The component loading lb represents the active power flow p∗b,t on a branch
without curtailment of load or feed-in divided by the maximum active
power Pb,t:

lb,t =
p∗b,t

Pb,t
∀ b ∈ B, t ∈ T, (6.3)

p∗b,t = ∑
n∈down(b)

(
P f ix

n,t + pd f o
n,t

)
∀b ∈ B, t ∈ T. (6.4)

The maximum active power Pb,t of branch b is determined with the help
of the nominal apparent power (i.e. thermal limit) Snom

b of branch b and

the reactive power flow Q f ix
b,t caused by all inflexible units downstream of

branch b:

Pb,t =

√(
Snom

b
)2 −

(
Q f ix

b,t

)2
∀b ∈ B, t ∈ T. (6.5)

To model the power flow equations, we use the linearised Dist-Flow equa-
tions described in [162]. It assumes that line losses can be neglected and is
only applicable to radial networks. As the LV grids under inspection are all
radial grids and the MV grids are assumed to be operated as open rings,
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the method is suitable for this study. We therefore integrate the following
set of equations for power flow on branches:

pb,t = ∑
n∈down(b)

(
P f ix

n,t + pd f o
n,t − pcurt,d f o/l

n,t + pcurt, f
n,t

)
∀b ∈ B, t ∈ T,

(6.6)

qb,t = ∑
n∈down(b)

(
Q f ix

n,t − qcurt,l
n,t + qcurt, f

n,t

)
∀b ∈ B, t ∈ T,

(6.7)

−Pb,t ≤ pb,t ≤ Pb,t ∀b ∈ B, t ∈ T, (6.8)

where pb,t and qb,t correspond to the active and reactive power flows on
branch b, respectively, which are determined by active and reactive power
drawn from all nodes n ∈ down(b) downstream of the branch in a radial
network. The parameters P f ix

n,t and Q f ix
n,t describe the sum of active and

reactive power of all inflexible units at node n, respectively, and pd f o
n,t the

flexible power consumption of all DFOs connected to node n.

The node voltages and the voltage drop between two neighbouring nodes
m and n are described by:

vslack,t = V2
nom ∀t ∈ T, (6.9)

vm,t = vn,t + 2 · (pb,t · Rb + qb,t · Xb) ∀b ∈ B, t ∈ T, (6.10)

V2
min ≤ vn,t ≤ V2

max ∀n ∈ N, t ∈ T, (6.11)

where vn,t is the squared magnitude of voltage at node n. The slack vslack,t
at the MV-side of the station connecting the grid to the HV is set to the
squared nominal voltage of the grid. Equation (6.10) describes the voltage
drop over a branch, were Rb and Xb are the resistance and the reactance
of branch b, respectively, and n and m are neighbouring nodes of branch b.
The line capacitance is neglected in all following investigations. Vmin and
Vmax give the allowed lower and upper bounds of the voltage and are here
set to Vmin = 0.9 Vnom and Vmax = 1.1 Vnom.
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C A S E S T U D Y I : I N T E G R AT I O N O F E L E C T R I C
V E H I C L E S

The following chapter is extended from two published conference publications. The
first case study is based on: A. Heider, K. Helfenbein, B. Schachler, T. Röpcke, and
G. Hug, “On the Integration of Electric Vehicles into German Distribution Grids
through Smart Charging,” in 2022 International Conference on Smart Energy
Systems and Technologies (SEST), 2022 [115], Copyright ©2022, IEEE. The second
case study is based on: A. Heider, F. Moors, and G. Hug, “The Influence of Smart
Charging and V2G on the Flexibility Potential and Grid Expansion Needs of
German Distribution Grids,” in 2023 International Conference on Smart Energy
Systems and Technologies (SEST), 2023 [163], Copyright ©2023, IEEE. We provide
more in-depth results for the first case study and investigate additional levels of
flexibility in the second case study compared to the original publications.

The emission reduction goals for the transport sector adopted by the Ger-
man government call for a reduction of 40 - 42 % of CO2-emissions by
2030 [164]. With these emission targets, a growing share of electric vehicles
(EVs) seems without alternative. A high share of the electric vehicle (EV)
charging will thereby take place in medium voltage (MV) and low volt-
age (LV) grids. Recent research has found that a high penetration of EVs
can lead to severe voltage and component overloading issues within the
grids [100]. However, the negative impact can be reduced by making use of
the available flexibility of the charging process and adapting the charging
strategies of EVs [165], [166]. Both the severity of grid issues and the effec-
tiveness of different charging strategies likely depend on the types of grids.
In grids with high shares of variable renewable energy sources (VRES) such
as wind and PV, a coordinated charging could even support the integration
of VRES [167].

Literature furthermore shows different effects for the simultaneous integra-
tion of EVs with photovoltaics (PV) and wind feed-in (e.g. [23]). It indicates
that the optimal charging strategy is dependent on the composition of
technologies present in the distribution grids (DGs). However, a systematic
analysis of the influence of different charging strategies on such differently
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composed grids is still missing. We close this research gap by examining
typical German DGs divided into PV-, wind- and load-dominated grids to
address the following research questions:

• How do different charging strategies influence the simultaneous inte-
gration of EVs and renewable energy sources (RES) into the different
grid types?

• What are the main factors determining the effectiveness of the charg-
ing strategies?

• How do different levels of flexibility influence the effects on the grid?

In the following, we compare smart charging that allows shifting within
the originally scheduled charging session with other rule-based charging
strategies and investigate different levels of EV flexibility.

In the first case study in Section 7.1, we investigate the potential of cen-
trally optimised charging to reduce grid issues and curtailment or grid
reinforcement needs to solve these issues. Since centrally optimised charg-
ing might be hard to implement, we compare the results to rule-based
charging strategies to extract suggestions for the effective grid integration
of EVs.

In the second case study in Section 7.2, we compare optimised EV charging
at different levels of EV flexibility with respect to their potential to reduce
the necessary curtailment and grid reinforcement. The levels of flexibility
differ in three aspects. First, which charging use cases are assumed to be
flexible; Second, if charging is only allowed within the originally scheduled
charging session or between different parking events; And last, whether
or not the vehicle-to-grid (V2G) service is available. This way, the effective-
ness of different flexibility measures to increase EV flexibility is evaluated
regarding their ability to reduce geographic flexibility needs.



7.1 comparison of rule-based and optimised ev charging 137

7.1 comparison of rule-based and optimised ev charging

In the first step, we want to compare optimised and rule-based charging
strategies. While the optimisation of EV charging is a good way to measure
the maximum potential to limit the stress on DGs, it might not be feasible
to implement a centrally optimised charging of EVs in reality. We there-
fore compare it to rule-based charging strategies. They might be easier to
implement and could therefore replace the central optimisation, which is
computationally expensive and requires high coordination between grid
operators and EV owners.

The remainder of the section is structured as follows. Section 7.1.1 describes
the setup of the study, including investigated grids, charging strategies
and the measures of comparison. In Section 7.1.2, the results are presented
and discussed, further divided into the obtained EV charging patterns,
the flexibility potential, arising grid issues as well as curtailment and grid
expansion needs to solve these issues, and in Section 7.1.3 conclusions are
drawn.

7.1.1 Study Setup

Fig. 7.1 shows the research design used in this study. The individual steps
are further detailed in the indicated sections or below. We use the six
representative grids for the target year 2035 introduced in Section 3.1.5. The
charging demand is determined as described in Section 3.2.1 and integrated
to the grids as described in Section 3.2.2. With the help of charging demand
and standing times, we determine the flexibility potential in terms of
shiftable energy and available power and the resulting charging time series
with the different charging strategies. In a last step, curtailment and grid
reinforcement costs are determined.

To allow for a manageable problem size with the temporally and spatially
highly resolved data, we choose two representative weeks for each grid
for all following investigations. To account for extreme load and feed-
in conditions, the weeks of maximum and minimum residual load are
used.

Flexibility Potential

Flexibility is modelled as described in Section 3.2.4. For our study, we use
the Flex scenario for EVs (see Tab. 3.10). It assumes that charging is only
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Distribution Grids (3.1.5) Charging Demand (3.2.1)

Flexibility Potential and

Charging Strategies

Curtailment and

Grid Expansion Costs

Figure 7.1: Research design of study.

shifted within the original standing time and not between different parking
events so that consumer convenience is not compromised. Further, only
charging at home and work is considered flexible, as in the case of public
charging and high power charging (HPC) the priority lies in the fulfilment
of the service.

Optimised Charging

Since in the Flex scenario, charging demand and charging location are
predetermined, we use the concept of flexibility envelopes introduced in
Section 3.2.6. The charging of EVs is modelled with constraints (3.17), (3.11),
(3.13) and (3.14) and is used as a flexible resource in the optimal power
flow (OPF) formulation (6.1) - (6.11) in Section 6.

To allow for reasonable computation times, we apply spatial and temporal
complexity reduction for the optimisation. Spatially, all feeders connected
to the high voltage (HV)-MV-station are treated separately in the optimi-
sation. As the MV-side of the transformer is set as slack in the power flow
calculations, the feeders do not influence each other in terms of power flows
on branches and node voltages. On the temporal scale, the optimisation is
solved iteratively for the individual days of the two selected weeks. Each
day is solved with an overlap of six hours into the next day to determine
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the initial charging power and energy level for the following day. To ensure
the feasibility of the optimisation problem, (6.8) and (6.11) as well as the
initial charging state for consecutive days are relaxed through respective
slack variables, which are strongly penalised in the objective function. For
clarity, we do not include the slack variables in the equations.

Rule-Based Charging

The optimised charging is compared to uncoordinated charging, referred to
as reference charging, as well as two heuristic charging strategies, namely
reduced and residual load charging, developed in [108].

reference charging assumes an uncontrolled charging of charging
processes. This corresponds to a start of the charging process immedi-
ately after arriving at a charging point and charging at full capacity
until the full charging demand is met.

reduced charging aims to reduce the stress on the grid by lowering
charging powers to a minimum. It does so by expanding the charging
process over the full standing time and charging at a reduced rate.
This reduced rate is thereby bound by an assumed technical lower
limit of 10 % of the nominal power of the respective charging point.

residual load charging is based on [168]. It aims at smoothing the
residual load within the MV grids by shifting charging demand into
times with low residual load. For this, charging of an EV takes place at
nominal capacity within the time steps that show the lowest residual
load.

Curtailment and Grid Expansion Costs

With the obtained charging profiles as well as feed-in of generators and
demand profiles of the other loads described in Section 3.1.5, the results
of an AC power flow calculation performed with the open-source tool
PyPSA [78] serve as the basis for calculating the required curtailment
and grid expansion necessary to stay within the voltage and current flow
constraints. We use the values for normal operating conditions, described
in Section 3.1.2. The maximum allowed voltage deviation is thus set to 10 %
and the maximum allowed component loading to 100 %. To calculate the
necessary curtailment to stay within these bounds, we use the methodology
described in Section 3.1.4. The feed-in respectively load is therein iteratively
reduced in steps of 1 % until all grid issues are resolved. The calculation of
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grid expansion measures utilises the reinforcement method implemented
in eDisGo [75], more thoroughly described in Section 3.1.3. It comprises
heuristics of grid expansion measures to solve voltage and overloading
issues.

7.1.2 Results and Discussion

The following sections present and discuss the results of our investigations.
First, the charging profiles and charging peak load for the different charging
strategies are displayed. Next, we showcase the flexibility potential of
smart charging. Lastly, we evaluate the influence of the charging strategies
on arising grid issues, necessary curtailment and grid expansion costs,
respectively.

EV Charging

Fig. 7.2 shows the charging profiles of the different charging strategies for a
representative PV-dominated grid (PV-1). Table 7.1 additionally contains
absolute charging peaks and simultaneities relative to the installed capacity
of charging infrastructure for all investigated grids and charging scenarios.
In the case of reference charging, we see a charging peak at 7:45 and a
slightly lower one around 18:00. These times correspond to times when a
high share of cars arrive at work and home, respectively. Reduced charging
decreases these peaks but displays a similar charging profile. While the
charging peak load for reference charging ranges between 7.5 - 9.2 % of the
installed charging capacity in the different grids, it is lowered to 5.6 - 6.9 %
through reduced charging. Residual load charging displays a peak around
14:15, which results from a relatively high PV feed-in and decreasing load
towards the afternoon and therefore a trend of shifting the charging to
this time. Another smaller peak is visible in the early morning hours. The
charging profile of residual load charging differs for the different types of
grids but always displays the described peaks. In wind-dominated grids,
higher variability of the daily charging pattern is observed. The charging
peak load for residual load charging ranges between 9.7 - 14.9 % of the
installed charging capacity. This constitutes a significant increase in the EV
peak load compared to the reference charging. However, this increase is
seen in times of low residual load, therefore the peak of the overall residual
load in the DG is not increased. As expected, the residual load charging
strategy leads to the biggest smoothing effect of the overall residual load (see
Fig. 7.3). The optimised charging displays a similar course as the residual
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Figure 7.3: Residual load of the representative load-dominated grid Load-1 in the
week of minimum residual load for the different charging strategies.

load charging but lowers the charging peaks. This effect leads to a decreased
charging peak load for the optimised charging of 5.8 - 8.3 % of the installed
charging capacity.

Flexibility Potential

With the proposed method, it is possible to quantify and visualise the
expected flexibility potential of EV charging in terms of available power and
shiftable energy. The available power and shiftable energy are calculated
by subtracting the lower bounds from the upper bounds, respectively.
Fig. 7.4 shows the shiftable power in percent of the installed capacity of
charging stations and the shiftable energy in percent of mean daily energy
consumption using reference charging in a representative load-dominated
grid.
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Table 7.1: Maximum (absolute and relative) charging peaks in the different grids
and EV charging scenarios.

Maximum EV charging peak [MW] / (Simultaneity [%])

Reference Reduced Residual Optimised

Load-1 5.8 (8.7) 4.1 (6.2) 6.4 (9.7) 4.3 (6.4)

Load-2 3.1 (8.3) 2.4 (6.3) 3.9 (10.3) 2.7 (7.1)

PV-1 2.4 (9.2) 1.6 (6.1) 3.9 (14.9) 2.1 (8.1)

PV-2 5.4 (7.8) 3.9 (5.6) 7.2 (10.3) 5.7 (8.3)

Wind-1 2.0 (7.5) 1.9 (6.9) 3.0 (11.1) 1.7 (6.4)

Wind-2 3.0 (9.1) 2.0 (6.2) 3.7 (11.4) 1.9 (5.8)
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Figure 7.4: Mean available power (left) and shiftable energy (right) for the load-
dominated grid Load-1 for both weeks.
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The highest available power is displayed around noon at weekdays with a
maximum of 22.6 % of the total installed charging station capacity, which is
approximately 1.7 times the peak charging load in the reference case. The
higher available power in day time results from higher installed charging
capacities for work charging than for home charging. On the contrary, the
consumed energy is higher for home charging. Therefore, a generally higher
shiftable energy can be observed in night hours. There is limited shifting
potential for weekend days, especially in terms of shiftable energy. The
reduced charging demand for these days in turn leads to a high charged
amount on Mondays and therefore the highest shifting potential of 27.5 %
of the mean daily consumption by reference charging. This indicates longer
trips on weekends, leading to higher charging demands on Mondays.

Grid Issues

Fig. 7.5 and Fig. 7.6 show the distribution of violations of voltage bounds
and overloading in a representative load- (Load-1, left) and PV-dominated
(PV-1, right) grid, i.e. they show the deviations from the bounds and only for
cases when the bounds are violated. All violations are displayed on the top,
while the bottom shows the most severe incidents per component, namely
the highest undervoltage per bus and overloading per branch. In both cases,
the probability distribution (obtained with a kernel density estimation) is
displayed. The width of each violin within one subplot is thereby scaled
with the number of occurrences of voltage violations and overloading
events. The violation of voltage or loading bounds for one component and
time step thereby counts as one occurrence. Only the violins within one
subplot can be directly compared to each other. A smaller width means
fewer occurrences, while the position on the y-axis indicates the severity of
the grid issues. The area of the violins within one subplot can be interpreted
as an indicator for the total number of occurrences of the respective grid
violations in the upper subplots and the total number of components facing
grid violations in the lower subplots.

The only voltage violations in the load-dominated grid are undervoltage
events, as Fig. 7.5 (left) shows. The undervoltage incidents in the No EV-case
stem from the integration of heat pumps (HPs). It can be seen that the inte-
gration of EV charging increases the number and severity of undervoltage
incidents. Coordinated charging can decrease the number and severity of
these events compared to reference charging. The most severe undervoltage
events (bottom) are more substantially reduced than the total number of
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Figure 7.5: Distribution of voltage issues in load-dominated grid Load-1 (left) and
PV-dominated grid PV-1 (right) with EV charging using the differ-
ent charging strategies and without EVs. On the top, all occurring
voltage issues are displayed. On the bottom, only the most severe
undervoltage event per bus is displayed.

occurrences (top). In this case, optimised and reduced charging outperform
residual load charging. For the reduction of the number of occurrences, on
the other hand, residual load charging performs equally well as optimised
charging and outperforms reduced charging.

In the PV-dominated grid (right), the main voltage violations are over-
voltage events caused by the integration of RES. With the integration of
EVs, undervoltage events also occur. The most severe undervoltage event
depends again on the charging strategy, but in this case, residual load charg-
ing leads to an even lower undervoltage extreme value than the reference
charging. As shown in Fig. 7.2, the residual load charging can lead to a high
simultaneity in charging. When charging and the feed-in, which causes
the simultaneous charging, are not located in the same areas of the grid,
there is no local balancing of feed-in and demand. Combined with a high
density of charging stations in certain parts of the grid, this can lead to the
displayed effect of an increase in the severity of grid issues.
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PV-1Load-1

Figure 7.6: Distribution of overloading issues in load-dominated grid Load-1
(left) and PV-dominated grid PV-1 (right) with EV charging using
the different charging strategies and without EVs. The top shows all
occurring overloading events while the bottom displays only the most
severe overloading event per branch.

The effects of the charging strategies on the overloading issues are similar
as observed for voltage violations in both grids, as shown in Fig. 7.6. In
the load-dominated grid (upper left), the number of small overloading
incidents can be significantly reduced with coordinated charging strategies
compared to reference charging. The more significant overloading events
remain similar with the integration of EV charging and the different charg-
ing strategies. It has to be mentioned that the number of occurrences for
overloading incidents is significantly smaller than for voltage issues in this
grid. The maximum overloading per branch (lower left) can also be signifi-
cantly decreased by all coordinated charging strategies, most effectively by
optimised charging, followed by reduced and residual load charging.

In the PV-dominated grid, the total number of overloading events (indicated
by the area of the violins in the upper right) is not significantly impacted
by any of the different charging strategies. This implies that a large share of
the overloading events is caused by RES integration. Smaller overloading
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issues slightly increase with uncoordinated charging and can be reduced
by coordinated charging, most effectively by the optimised charging. For
the most severe overloading per branch (lower right), the integration of
EVs shows a stronger effect. For the reference charging, the number of
overloaded components increases compared to the No EV-case, which can
be estimated from the total area of the violins. Optimised and reduced
charging reduce the number of overloaded components. The residual load
charging, however, shows no such reduction and even increases the most
severe overloading event. The displayed results effectively showcase the
possible negative effects of residual load charging. Its grid-wide incentive
can lead to high simultaneities and increased local stress on the grids.

Necessary Curtailment

To assess the influence of the different charging strategies on the necessary
curtailment, we study the change in curtailment needs caused by EV in-
tegration. To this end, necessary curtailment is determined for a scenario
without EVs and used as the reference to determine changes in curtail-
ment needs due to EV integration. Fig. 7.7 shows the results normalised
to the integrated charging demand for the different grids and charging
strategies. Positive values indicate an increase in load curtailment, and
negative values display a reduction of feed-in curtailment compared to
the reference case without any EVs. Generally, all coordinated charging
strategies, i.e. reduced, residual and optimised charging, lead to a decrease
in total necessary curtailment compared to the reference charging.

In the feed-in dominated grids, we see a reduction of feed-in curtailment
additionally to the reduction of load curtailment. In the PV-dominated
grids, this effect even leads to a net reduction of curtailment needs with
the integration of EVs compared to the reference scenario without EVs.
Optimised charging shows the highest reduction potential in all of the
grids, followed by residual load and reduced charging.

However, the overall potential of the assessed charging strategies to decrease
necessary curtailment proves to be limited. Including the additional load
of uncoordinated EV charging leads to an increase in load curtailment of
27.8 % within all the grids. Optimised charging as the most effective strategy
can reduce this additional load curtailment to 23.6 %. Feed-in curtailment is
reduced by 0.5 % by the reference charging. This reduction can be increased
to 0.7 % by the optimised charging. It has to be stressed that the largest
share of the absolute necessary curtailment is feed-in curtailment with
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Figure 7.7: Change in curtailment necessary to solve grid issues caused by EV
integration with different charging strategies compared to the case
without EVs. The values are normalised to the integrated charging
demand.

87.1 % of the total curtailment of all grids in case of reference charging.
The potential to reduce this feed-in curtailment by smart charging proves
to be small because of the geographical distribution of load and feed-in.
The grid with the highest feed-in curtailment, Wind-1, includes the smallest
amount of flexible charging. Additionally, flexible charging and curtailment
needs are not necessarily located in the same area of a grid. Topology
plots show that in some grids, feed-in curtailment and flexible charging are
located relatively far from each other (see Fig. 7.8). Additionally, they can
be installed at different voltage levels. So even if the temporal flexibility to
balance excessive feed-in from PV or wind exists, the grid cannot transport
the power with the status quo grid capacities considered in this study.

The limited reduction of load curtailment, on the other hand, has two
main reasons. First, in Load-1, Wind-1 and Wind-2, the grids that show
higher additional curtailment due to the integration of EVs and cause
93.4 % of the total additional load curtailment, the share of the curtailment
of flexible charging, i.e. home and work charging, compared to inflexible
charging, i.e. public and HPC, is very low with 2.0 - 4.2 %. Since only flexible
charging can be shifted, the larger share of curtailment of inflexible charging
cannot be influenced by the charging strategies. The other reason is the
limited shifting potential between day and night hours when shifting is
only allowed within the standing time of the originally scheduled charging.
Fig. 7.9 shows the load and feed-in curtailment in the wind-dominated grid
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Figure 7.8: Topology plot for flexible charging (left) and feed-in curtailment
(right) in the grid PV-1. The size of the circles indicates the cumulative
energy of the respective quantity in the two investigated weeks.
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Figure 7.9: Load curtailment (left) and feed-in curtailment (right) in the case of
reference charging in the representative wind-dominated grid Wind-1
for the week of maximum residual load.

Wind-1 for EV integration with reference charging in the week of maximum
residual load. Flexible charging can reduce the necessary curtailment in
two ways: by shifting away from times with high load to reduce load
curtailment and by shifting the demand into times of high feed-in to reduce
feed-in curtailment. Fig. 7.9 shows no load curtailment during night hours.
However, work charging, which leads to additional load curtailment in the
daytime, cannot be shifted into these night hours. On the other side, PV
curtailment, which occurs during the day around noon, cannot be reduced
by the flexibility of home charging which shows high flexibility potential at
night (see Fig. 7.4).
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Figure 7.10: Reinforcement costs caused by RES, HP and EV integration in the
different grids.

Grid Expansion Costs

As an alternative to providing temporal flexibility, grid expansion measures
can be deployed to solve the occurring grid issues. We therefore also
examine the influence of EV integration on the costs of necessary grid
expansion for the different grids and charging strategies. The results are
shown in Fig. 7.10. In contrast to the curtailment, there is a strong influence
of the charging strategy on the overall grid expansion costs. The reference
charging increases grid expansion costs of all six considered grids by 194 %
compared to the costs without EV integration. Optimised charging, as the
most efficient strategy, can reduce the increase to 20 %. The difference in
the impact of the charging strategies on curtailment and grid expansion
costs stems from the fact that for grid expansion, only the most severe grid
issues influence the necessary measures. In the case of curtailment, on the
contrary, the frequency and duration of all grid issues play a role. Hence, it
can be concluded that the influence of the charging strategies on the most
severe grid issue is stronger than on the frequency and duration, which
was also shown in Fig. 7.5 and Fig. 7.6.

Studying the different charging strategies, we again see the highest reduc-
tion potential in the optimised charging. This reduction might still not
be the global optimum as neglecting the losses in the optimisation can
lead to sub-optimal solutions. The optimisation might underestimate the
flow on lines and require curtailment or grid expansion measures where
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a slight change in charging might have been sufficient to solve the issues.
However, by minimising the component loading in the objective function,
these situations should be reduced to a minimum, and our results therefore
still give a good estimation of the reduction potential. Within the rule-based
approaches, the reduced charging proves to be more efficient than the
residual load charging. In the wind-dominated grids, the residual load
charging even leads to a small increase in grid expansion costs compared
to the case with reference charging. This behaviour can be explained by
false incentives received by a charging based on the residual load of the
whole grid instead of a more locally resolved incentive. In grids with very
differently composed feeders, such as the wind-dominated grids, it can
lead to high load peaks in feeders with a high number of EVs, resulting
in additional grid expansion measures. An increase in peak load and grid
issues due to the influence of wind feed-in on EV charging was also shown
in [158] and [23], respectively.

Overall, all investigated charging strategies reduce the total grid reinforce-
ment costs observed in the investigated grids compared to the reference
charging. The rule-based reduced charging shows a similarly high reduc-
tion potential with 57 % as the optimised charging with 59 % compared
to the costs with reference charging. The residual load charging shows
significantly lower potential, with 5 % reduction compared to the grid
reinforcement costs with reference charging.

To investigate the sensitivity towards the chosen grid limits, Fig. 7.11 dis-
plays the change in total reinforcement costs with increasing tolerance for
overloading (left) and voltage deviations (right). Therefore, the allowed
component loading and voltage deviations are increased by 10 % and 50 %.
For the increase of allowed component loading, the reduction is mainly
in the MV and at MV/low voltage (LV)-transformers. A large share of the
costs caused by (RES and HP) can be reduced, up to 64 % of the cost in the
No EV scenario in case of a 50 % increase of the allowed loading. The differ-
ence between the charging scenarios is comparably small. When increasing
the allowed voltage deviation, on the other hand, there is a large difference
between the charging strategies, implying that mainly reinforcement caused
by EV integration is reduced. The cost reduction mainly occurs in the LV,
reaching 35 % of the additional costs caused by EV integration for reference
charging and 50 % increase of the allowed voltage deviation. The reduction
is higher for the charging strategies that cause a high cost increase, i.e.
reference and residual load charging.
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Figure 7.11: Change in total reinforcement costs with increasing tolerance to-
wards overloading (left) and voltage deviation (right).

7.1.3 Conclusion

We investigated the influence of different EV charging strategies on the
simultaneous integration of EVs and VRES into typical German suburban
and rural MV-grids, including underlying LV-grids. Representative load-,
PV- and wind-dominated grids were therefore expanded with renewable
capacities from the eGo 100-scenario as well as HPs and EVs according
to the NEP C 2035-scenario. We then compared optimised charging and
rule-based approaches, namely reduced and residual load charging, with
reference charging. While studies have individually focused on grid issues,
curtailment and reinforcement needs, we investigated all three aspects to
cover different aspects of EV grid integration. Furthermore, we focused on
the influence of the technological composition of different types of grids to
showcase the interplay of VRES adoption and smart EV charging.

The results show that, on average, all investigated charging strategies reduce
curtailment needs and necessary grid expansion costs compared to reference
charging. However, the potential of EV charging to reduce curtailment and
grid expansion needs caused by the integration of VRES proves to be limited.
Only the curtailment needs in PV-dominated grids can be slightly decreased
compared to the curtailment needs without EVs. The grid expansion costs
for all grids and the curtailment in the load- and wind-dominated grids
increase with the integration of EVs. The additional grid expansion costs,
mainly occurring in the LV, are thereby highly dependent on the charging
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strategy and can be significantly reduced given the right strategy. The
optimised charging as the most efficient strategy achieves a cost reduction
of 59 % compared to the reference charging over all investigated grids. The
influence of the charging strategies on curtailment needs, on the other hand,
is small in the considered cases.

While the optimised charging strategy holds the highest reduction potential
for both measures, the rule-based charging strategies show different ten-
dencies. Reduced charging decreases the grid expansion costs to a similar
extent as optimised charging, achieving a reduction of 57 % compared to
the reference charging over all investigated grids. It could therefore serve
as a relatively simple alternative to the centrally optimised charging when
it comes to the reduction of grid expansion costs. However, it does not
perform equally well with the reduction of curtailment needs. It decreases
load curtailment but increases feed-in curtailment compared to the ref-
erence charging. Residual load charging, on the other hand, holds little
potential to decrease the grid expansion needs, only reducing the grid total
reinforcement costs by 5 % compared to the reference operation over all
investigated grids. In the wind-dominated grids, it even leads to an increase
in grid expansion costs compared to the reference charging. This is due to
high charging peaks that result from charging based on the residual load of
the grid. When charging and feed-in are located in different areas of the
grid, the high charging powers can lead to additional congestion in areas
with high charging demand. The same phenomenon leads to relatively high
load curtailment needs in feed-in dominated grids. On the other hand, the
shifting of charging demand into times of high feed-in reduces the feed-in
curtailment.

Our investigations show that in addition to the type of grid, the geographi-
cal distribution of load and feed-in influences the efficacy of the different
charging strategies. For future research, we therefore recommend to use
several differently composed grids when investigating smart charging in
distribution grids and take both the temporal and geographical dimension
of flexibility provision into consideration.
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7.2 comparison of different levels of ev flexibility

In the previous section, we compared optimised EV charging with rule-
based alternatives and proved that the influence of the different strategies
on the grid reinforcement costs in the distribution grids is high. However,
the optimised charging in the previous section represents a limited level of
EV flexibility, only allowing the shifting of home and work charging within
the originally scheduled charging session.

There are different ways to further increase the flexibility of EV charging,
such as making other charging use cases (e.g. public charging) flexible as
well or to allow shifting of the charging demand between standing times.
To increase flexibility further, EVs can provide electricity to the system
when needed, referred to as vehicle-to-grid (V2G). With this bidirectional
power flow, EVs can operate as moving storage. For the estimated flexibility
potential in Part I of this thesis, these measures proved to increase the
available flexibility significantly (see Section 4.3). In this section, we want to
investigate the influence of the different levels of EV flexibility considering
specific flexibility needs, i.e. their influence on curtailment needs and
grid reinforcement costs in distribution grids. To this end, we investigate
strategies which allow to shift charging demand between standing times
to different charging locations and the utilisation of V2G additionally to
shifting within standing times, which was assessed in the previous section.
We compare the results of four optimised strategies with different levels of
flexibility with an uncoordinated reference operation (i.e. plug and charge).
The necessary curtailment and grid reinforcement to avoid curtailment are
evaluated for each strategy and put into perspective with the previously
estimated flexibility potential.

7.2.1 Study Setup

Figure 7.12 shows the general setup of the case study. The charging demand
(further detailed in Section 3.2.1) is integrated into a subset of the DGs
introduced in Section 3.1.5. We model different levels of flexibility for EVs
and determine the grid-optimised charging. In a last step, the different levels
of flexibility are compared in terms of flexibility potential, curtailment and
grid reinforcement needs. The single steps are described in more detail in
the following.
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Figure 7.12: Research design of study.

Distribution Grid Feeders

Due to a lack of real-world distribution grid topology data, synthetic MV-
grid topologies with underlying LV-grids were generated with the software
ding0 [76] and expanded with renewable generation, HPs and EV charging
stations as explained in Section 3.1.5. We use the described setup of the
NEP2035 scenario.

We use a subset of these grids, which were subdivided into load-, PV- and
wind-dominated grids to investigate grids with different characteristics. To
reduce the problem to a manageable size, we use representative feeders
of the grids with a similar technological composition as the original grids,
which allows us to compare the effect of optimised charging on different
types of grids. In total, we investigate 20 MV-feeders with underlying
LV-grids. This includes seven load- and wind-dominated feeders and six
PV-dominated feeders. Fig. 7.13 reflects the composition of the investigated
feeders summed up over the considered grid types. For generation tech-
nologies, the installed capacities are displayed, while for EV charging and
the conventional load, the peak load values are shown.

Generally, the feeders show high installed EV charging capacities since only
feeders with a high number of EVs are selected for further investigation. In
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Figure 7.13: Peak load of reference EV charging and conventional load as well
as installed capacities of generation technologies of the investigated
feeders. The values are displayed summed up over the different grid
types.

total, 762 EVs in the load-dominated feeders, 853 EVs in the PV-dominated
feeders and 906 EVs in the wind-dominated feeders are integrated into the
grids. If possible, charging stations are added to existing grid connection
points. Otherwise, new connection lines to the closest grid connection
points (e.g. for parking lots not close to existing electrical installations) or
transformer stations, depending on the nominal capacity of the charging
station, are installed.

Charging Demand

For the integration of EVs, we use synthetic driving profiles created with
the simulation tool SimBEV [169] and map the obtained charging demands
to the feeders. In reality, EV owners might commute long distances between
different charging use cases and thus charge in different feeders of the
grids. Since the geographical shift between different grids or feeders is
not the focus of this study, we use the simplifying assumption that the
charging demands of each EV occurs within a single feeder and map the
entire charging demand to charging stations within that feeder.

The reference charging is obtained with a heuristic approach and resembles
a behaviour where the EVs charge directly after arrival with the nominal
charging power until the charging demand of that charging session is fully
met.
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Optimised Charging with Different Levels of Flexibility

We want to compare the effect of different levels of flexibilisation of EVs
on their flexibility potential and their influence on the grid. For the later,
we use the OPF formulation introduced in Chapter 6, where the necessary
curtailment to stay within the grid limits and the component loading are
minimised. We furthermore model the levels of flexibility introduced in
Section 3.2.4 to investigate the influence of EV flexibility. For readability,
we briefly repeat the levels, their underlying assumptions and modelling in
the following.

EVs Flex and EVs Flex+: EVs have the flexibility to shift charging demand
within the originally scheduled charging session. As the charging location
is thus predefined, we use the concept of flexibility envelopes introduced in
Section 3.2.6. In EVs Flex, only home and work charging stations can shift
their demand, whereas in EVs Flex+, public charging is additionally made
flexible.

EVs Flex++ and EVs V2G: To increase the flexibility, shifting between stand-
ing times and to other charging locations is allowed in these cases. Since it
is an outcome of the optimisation at which location the charging demand
occurs, the battery-based modelling of EVs introduced in Section 3.2.5 is
used. In the case of EVs V2G, discharging is additionally allowed, while for
EVs Flex++, only smart charging is allowed, i.e. pV2G

c,t = 0.

Model Parameters

Allowing the utilisation of V2G introduces a new penalty term penEV to the
original objective function (6.1) to prevent excessive simultaneous charging
and discharging (further detailed in Section 3.2.5). The weighting δ of the
different terms in the objective function

min δcurt ∑
n∈N

∑
t∈T

pcurt
n,t + δload ∑

b∈B
∑
t∈T

l2
b,t + penEV + δslack penslack, (7.1)

s.t.

pcurt
n,t = δcurt,l pcurt,l

n,t + δcurt, f pcurt, f
n,t +

δcurt,ev pcurt,ev
n,t ∀ n ∈ N, t ∈ T,

(7.2)

penEV = δcharge(∑
s∈S

∑
t∈T

pEV
s,t · ∆t − Etot), (7.3)
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Table 7.2: Parameter values for weights in objective function.

δcurt δload δcurt,l δcurt, f δcurt,ev δcharge δslack

1 10−3 1.0 0.5 0.5 2 102

greatly influences the results of the optimisation and their weight relative to
each other is important. For the adapted objective, the original weights are
therefore adjusted. Table 7.2 summarises the weights chosen for the given
case study, which are the result of a sensitivity analysis (see Section 7.3).
The total weighted curtailment pcurt

n,t is weighted as more important than
the component loading lb,t, which is used to achieve a unique solution. It is
further assumed that the curtailment of flexible charging pcurt,ev

n,t and feed-in

pcurt, f
n,t is preferable to the curtailment of inflexible load pcurt,l

n,t , therefore
δcurt,ev = δcurt, f = 0.5 and δcurt,l = 1.0.

To allow for reasonable levels of V2G but prevent excessive utilisation
thereof, we choose a weighting factor of δcharge = 2 for the penalty term
of simultaneous charging and discharging of EVs. This value leads to an
equally high penalty for the additional charging demand as for feed-in
curtailment (for further justification, see [113]). The additionally increased
component loading (leading to higher values of the second term in the
objective function) leads to feed-in curtailment being slightly preferable
to simultaneous charging and discharging. If simultaneous charging and
discharging occur nevertheless, the results are corrected by using the net
consumption and subtracting the additional consumption caused by losses.
The obtained feed-in curtailment is equally corrected by the amount of addi-
tionally caused losses. With the linear penalty term, the computation times
are reduced to similar values as for the constrained optimised charging (for
more details and values, see [113] and Section 7.3).

Last, the sum of all slacks that are used to relax the constraints for the
voltage and component loading limits ((6.8) and (6.11)) as well as battery
state of charge (SoC) and maximum charging of the EVs ((3.2) and (3.6))
are heavily penalised with δslack = 102.

Measures of Comparison

To investigate the efficacy of the optimised charging strategies compared
to the reference charging, we compare the necessary curtailment to stay
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within the grid restrictions directly obtained by the optimisation. The maxi-
mum component loading is restricted to 100 % and the maximum voltage
deviation to ±10 %. If any of these limits are exceeded, conventional load,
EV charging, or feed-in are curtailed by the optimisation. For comparison,
the curtailment of conventional load and EV charging are classified as load
curtailment and the curtailment of PV, wind and other generation as feed-in
curtailment.

As an alternative to curtailment, the grids could be reinforced to incorporate
the additional load and feed-in at all times. For this, the optimised charging
strategies and the reference charging are integrated into the investigated
feeders by assigning the obtained charging patterns to the respective charg-
ing stations and the respective grid flows are computed. If grid issues are
detected (see Section 3.1.2), the affected components are reinforced. We use
the approach introduced in Section 3.1.3 to estimate the necessary reinforce-
ment and the reinforcement cost as a measure of comparison. The optimised
charging strategies are thereby compared to the reference charging and a
case without the integration of EVs. In that latter case, the resulting costs
are entirely caused by integrating additional renewable generation and heat
pumps.

To limit the complexity while still accounting for the weekly charging
patterns as well as high loading of the grids, we choose two extreme weeks
for all investigations: the week of highest and lowest residual load of the
respective feeder. The optimised charging is obtained for one week at a
time.

7.2.2 Results and Discussion

In the following, the results are shown and discussed. For additional results
and more in depth discussion of the results and modelling assumptions,
we refer to [113].

Charging Patterns

Fig. 7.14 shows the charging patterns of all levels of flexibility for a load-
(top), PV- (center) and wind-dominated (bottom) feeder. The values are
displayed relative to the installed capacities of all charging stations in the
respective feeder. The reference charging shows a peak in the morning
hours when EVs arrive at work and in the afternoon when EVs arrive
at home. Charging on the weekends shows less pronounced charging
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peaks. In the PV-dominated feeder, all optimised charging strategies shift
the demand into the early morning and noon hours to use the high PV
feed-in around noon. The mean charging peak for optimised charging
increases with the level of flexibility and can obtain higher values than for
the reference charging which however is aligned with the PV infeed. In
the load-dominated grid, where a small share of PV is present, the same
effects can be observed but to a smaller extent and the overall peak is
reduced compared to the reference charging. In the wind-dominated grid,
all optimised charging strategies lead to a lower overall peak in charging
compared to the reference case and a relatively flat charging profile.

With higher flexibility, more charging demand is shifted to the weekends
(see Fig. 7.15) as the conventional load is lower in these times. For reference
charging, 22.0 % of the overall charging occurs on weekends. The optimised
charging in case of EVs Flex and EVs Flex+ shifts an additional 1.8 % and
2.1 % of the charging demand into the weekends. In these scenarios, only
charging events spanning from weekday to weekend can shift charging
demand to the weekend. In the case of EVs Flex++ and EVs V2G, with the
flexibility to shift between standing times, larger shares of 9.9 % and 9.7 %
of the charging demand are shifted to the weekends.

Curtailment Needs

Fig. 7.16 shows the reduction in necessary curtailment for the optimised
charging strategies compared to the reference charging strategy within all
simulated feeders (the absolute load curtailment in the reference case is
1.4 MWh and the feed-in curtailment 368.5 MWh). In general, additional
flexibility in optimised charging increases the reduction in both load and
feed-in curtailment. The absolute reduction of feed-in curtailment by op-
timised charging is higher than that of load curtailment for all optimised
charging strategies. However, in relative terms, the potential to reduce load
curtailment is much higher than the reduction of feed-in curtailment. The
optimised operation in the EVs Flex scenario can reduce load curtailment by
15.4 %. Allowing shifting of public charging additionally to home and work
charging (EVs Flex+) increases the reduction to 59.4 %. Allowing shifting
between standing times in EVs Flex++ even reduces the necessary curtail-
ment of load by 88.6 %. Including the utilisation of V2G in EVs V2G, on
the other hand, does not lead to a further reduction but shows the same
value as EVs Flex++ of 88.6 %. On the other hand, the relative reduction of
feed-in curtailment only amounts to 0.4 %, 0.5 %, 1.1 % and 1.7 % for the
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Figure 7.14: Charging pattern during the week (left) and the weekend (right)
for a load- (top), PV- (center) and wind-dominated (bottom) feeder,
displayed relative to installed charging station capacities. The shaded
areas indicate the standard deviation over the simulated days.
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Figure 7.15: Charging demand occurring during the week and on weekends
in percent of total charging demand for the different levels of EV
flexibility.

four levels of EV flexibility. In this case, allowing V2G shows a positive
effect and significantly increases the reduction of feed-in curtailment. The
additional reduction in feed-in curtailment is the same as when allowing
shifting between standing times and is much higher than when only includ-
ing public charging in addition to home and work charging is considered.
Hence, the different levels of flexibility exhibit different potentials to reduce
load and feed-in curtailment.

The main reason for the different magnitudes of relative reduction in load
and feed-in curtailment is that the curtailment of the load is much lower
than the curtailment of feed-in in the reference charging case. Only 1.4 MWh
of the 221.5 MWh additional load through EV charging have to be curtailed
whereas 368.5 MWh of the 4181.5 MWh total feed-in have to be curtailed.
One reason for the limited reduction potential for feed-in curtailment is the
geographical distribution of feed-in and EV charging, already found in the
previous case study. While larger generation units are directly connected
to the MV, EV charging mainly occurs in the LV. If components between
feed-in and EV charging are overloaded, the EV flexibility cannot be used
to reduce feed-in curtailment. On the other hand, the load curtailment is
mainly caused by the integration of EV charging. Flexibility from smart
charging will thus always be at the right location to reduce load curtailment
if all charging use cases are made flexible.



162 case study i : integration of electric vehicles

Load Curtailment Feed-in Curtailment
0

2

4

6

R
ed

uc
ti

on
in

C
ur

ta
ilm

en
t

[M
W

h]

EVs Flex

EVs Flex+

EVs Flex++

EVs V2G

Figure 7.16: Reduction of the necessary curtailment for the optimised charging
strategies compared to the reference strategy.

Since the curtailment values are directly obtained from the optimisation, no
losses are accounted for in the displayed values. Therefore, the absolute cur-
tailment needs would be slightly higher in the case of load curtailment and
slightly lower in the case of feed-in curtailment as losses correspond to addi-
tional load. The reduction of load curtailment by optimised charging would
likely increase when accounting for losses as these scale with the squared
magnitude of the current, and both optimised charging strategies lead to
lower charging peaks. Hence, there would be less additional load in times
of high stress on the grid, which is when curtailment is necessary.

Reinforcement Cost

Fig. 7.17 shows the grid reinforcement costs over all considered grids by grid
type for all investigated charging strategies. The required reinforcement
without EV integration is also displayed for comparison. In this case, the
required grid reinforcement is mainly caused by an increase of RES and, to
a minor extent, by HP integration. In the load-dominated feeders, almost
no reinforcement is necessary (a single transformer is reinforced; the level
of reinforcement differs due to different peak loadings). In the feed-in-
dominated feeders, the cost in the PV-dominated feeders is higher than in
the wind-dominated feeders, even though the overall required curtailment
is lower. The reason is that only the most severe overloading or voltage
issue determines the grid reinforcement cost. For the curtailment, on the
other hand, the duration and frequency of grid issues are also important
factors.
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Figure 7.17: Comparison of the reinforcement costs per component for the charg-
ing strategies and No EVs.

It also must be mentioned that specific individual feeders cause a large
share of the reinforcement costs, while others do not require reinforcement.
For example, the entire reinforcement costs in the MV occur in a single
feeder. The results are especially sensitive to these costs since reinforcement
in the MV is more expensive than in the LV. In selected feed-in dominated
feeders, the integration of EV charging with a high level of flexibility can
lead to lower reinforcement costs than in the No EVs scenario but in the
aggregate, the integration of EVs leads to additional reinforcement costs
that can, however, be reduced significantly using EV flexibility.

The costs for the additional integration of EV charging depend on the
charging strategy. The reference charging leads to a significant cost increase
of 88.4 % of the total costs in the No EVs scenario summed over all consid-
ered feeders. Optimised charging can reduce the additional reinforcement
costs by 58.3 % in the EVs Flex scenario and 77.4 % in EVs Flex+ compared
to the reference scenario. Making public charging flexible additionally to
home and work charging decreases the reinforcement costs in the load-
and wind-dominated feeders but shows little effect in the PV-dominated
feeders. The lower peak load of public charging relative to private charging
in the PV-dominated feeders could be an explanation for this. With EVs
Flex++ and EVs V2G, the reduction with respect to reference charging can
be further increased to 78.8 % and 80.2 %, respectively. Hence, overall, the
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Figure 7.18: Grid reinforcement costs caused by different types of components
in the investigated scenarios.

additional flexibility of shifting between standing times and using V2G only
leads to a small additional reduction of the grid reinforcement costs.

Most of the additional costs for the integration of EVs occur in the LV, with
small shares also at transformers at the MV/LV connection. The only feeder
showing reinforcement needs in the MV is PV-dominated. However, these
are caused by the integration of PV and are even slightly reduced by the
integration of EVs. When studying the type of reinforced components in
Fig. 7.18, the results show that a large share of the additional costs is caused
by lines connecting the charging points to the next grid connection point
or transformer station. The optimised charging strategies can effectively
reduce these costs by lowering the peak load and thus the required number
of parallel lines. They also reduce the costs of transformer reinforcement
to a smaller extent. Lastly, the costs caused by the reinforcement of other
components are not reduced significantly.

Since the objective of the optimised charging strategies is only a proxy
for the minimisation of grid reinforcement cost, the real potential of the
optimised charging strategies to reduce the cost further might be higher. If
integer values for the reinforcement of lines and transformers were included
and their real costs added to the objective function, the flexibility could
be pooled more effectively to reduce the maximum loading at a particular
location to avoid grid reinforcement of the overloaded component. How-
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ever, the resulting optimisation problem is computationally expensive and
therefore not applicable to the investigated large-scale grids [113].

7.2.3 Conclusions

We investigated the influence of different levels of flexibility in EV charging
on the flexibility potential and grid reinforcement requirements of character-
istic German distribution grids. We modelled 20 MV-feeder with underlying
LV-grids and integrated a total of 2431 EVs and additional RES capacities.
We then compared four optimised charging strategies at different levels of
EV flexibility with reference charging, where the EVs directly charge after
plug-in at full charging capacity until the charging demand is met. The first
level of EV flexibility allows shifting within the initially scheduled charging
event for home and work charging. In the second level, public charging is
additionally made flexible. The third level of EV flexibility allows shifting
charging demand to other charging events, thus also making it possible to
change the charging location. The last level additionally enables the usage
of V2G.

The additional flexibility availably by including public charging, shifting be-
tween standing times, and V2G proves to be differently effective in reducing
necessary curtailment and reducing grid reinforcement cost.

Load curtailment can be reduced by roughly 15 % for flexible home and
work charging at the lowest level of EV flexibility compared to the reference
charging. This reduction can be significantly increased by including public
charging (to 59 %) and by allowing shifting between standing times (to
89 %). No further increase is achieved for the highest level of flexibility
including V2G. The feed-in curtailment can also be reduced, and V2G
increases the reduction significantly in this case. However, the reduction is
relatively small for feed-in curtailment, with 0.4 %, 0.5 %, 1.1 % and 1.7 %
for the four levels of flexibility.

Grid reinforcement costs can be significantly decreased by optimised charg-
ing compared to reference charging. The total grid reinforcement cost
caused by the integration of RES and EV charging can be reduced by 27.4 %,
36.4 %, 37.0 % and 37.7 % with the four levels of flexibility, respectively,
compared to the reference charging. Shifting between standing times and
allowing V2G shows limited potential to reduce grid reinforcement costs
further. The flexibility to shift within the standing times seems sufficient to
reduce the reinforcement costs significantly. This result is in contrast with
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the flexibility potential estimated in the first part of the thesis (see Section
4.3). There, the flexibility potential could be drastically increased by allow-
ing shifting between standing times and the utilisation of V2G. The reason
for this discrepancy is partly that the estimated flexibility potential is a
purely temporal measure. While the temporal flexibility might be available,
it must be located close to the grid issues to reduce reinforcement. Addition-
ally, flexibility is necessary at specific times to reduce reinforcement needs
which is also not captured in the estimated flexibility potential.

The value of increasing the flexibility by incentivising smart charging at
public charging stations, shifts between standing times and the utilisation
of V2G therefore strongly depends on the use case. For the reduction of
grid reinforcement and load curtailment, shifting within the standing times
already shows high reduction potential in the investigated grids. On the
other hand, when reducing feed-in curtailment, shifting between standing
times and V2G prove to be more effective.
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7.3 sensitivities and performance

In the optimisation, we use several weighting terms. We investigate the influ-
ence of different choices of these on the results in Section 7.3.1. Furthermore,
we want to compare the performance of the different optimised charging
strategies in terms of runtime and memory usage in Section 7.3.2.

We evaluate only a subset of the feeders to limit the computational burden.
The considered five differently sized feeders have varying numbers of
integrated EVs which is summarised in Tab. 7.3. The sensitivity runs are
performed on a server with the following specifications: Intel(R) Xeon(R)
Gold 6154 CPU @ 3.00GHz, 2993 Mhz, 11 Core(s), 11 Logical Processor(s),
381 GB RAM. The memory usage is determined with the tracemalloc

package [170], which is a debug tool to trace the memory allocation. We use
it to measure the memory allocation during the solving process. It has to be
mentioned that it significantly increases the solving time. However, since
the solving times are only used to compare the runs relative to each other,
the absolute values are not that relevant. To measure the solving time, we
use the perf_counter method of the time package [171]. Furthermore, we use
gurobi [172] as a solver and the model is created using pyomo [173].

7.3.1 Sensitivity towards Weightings

Table 7.4 summarises the sensitivity runs for the different weighting terms.
The Base scenario uses the same weighting terms as used in Section 7.1 and
as explained in Section 6. In scenario δcurt, the effect of equally weighting all
three types of curtailment is investigated. Scenarios δcharge-1 and δcharge-2
vary the weighting of the penalty term to limit simultaneous charging
and discharging. Obj-c investigates the effect if only the curtailment and
penalties are accounted for in the objective function. Scenarios Obj-1, Obj-2
and Obj-3 investigate different weightings of curtailment and component
loading against each other and Obj-l the case, where only the component

Table 7.3: Investigated feeders for sensitivity and performance evaluation.

Load-I PV-I PV-II PV-III Wind-I

Number buses 51 188 488 1374 1449

Number EVs 19 41 79 200 189
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Table 7.4: Scenario values for sensitivity analyses of different weights.

Scenario δcurt δload δcurt,l δcurt, f δcurt,ev δcharge δslack

Base 1 10−5 1.0 0.5 0.5 2 104

δcurt 1 10−5 1.0 1.0 1.0 2 104

δcharge-1 1 10−5 1.0 0.5 0.5 1 104

δcharge-2 1 10−5 1.0 0.5 0.5 4 104

Obj-c 1 0 1.0 0.5 0.5 2 104

Obj-1 1 10−3 1.0 0.5 0.5 2 104

Obj-2 1 1 1.0 0.5 0.5 2 104

Obj-3 1 100 1.0 0.5 0.5 2 104

Obj-l 0 1 1.0 0.5 0.5 2 104

δslack-1 1 10−5 1.0 0.5 0.5 2 100

δslack-2 1 10−5 1.0 0.5 0.5 2 102

δslack-3 1 10−5 1.0 0.5 0.5 2 106

loading and penalties make up the objective function. In scenarios δslack-1,
δslack-2 and δslack-3, different weightings of the slack variables are investi-
gated.

We evaluate for these different weightings whether the solver finds a solu-
tion for all the investigated feeders and compare the total reinforcement
costs, total slack usage, curtailment needs and usage of V2G. Figure 7.19

displays the solving times for the evaluated five feeders. Shaded red areas
indicate that the solver exited because of numerical issues, and no solution
was returned. This was the case in scenario δslack-3 for three of the five
feeders, in scenario δcurt for two and in the Base and δcharge-1 scenarios for
one of the five feeders. This result indicates that the difference in δcurt and
δslack tends to be too high in these scenarios. In general, the solving times
are relatively similar within one grid for all the simulated scenarios.

In Figure 7.20, the total reinforcement costs (upper left), slack usage (upper
right), curtailment needs (lower left) and V2G usage, as well as simultaneous
charging and discharging (lower right), are displayed. The displayed values
include only the grids that were solved for all scenarios, i.e. PV-II and PV-III.
In terms of reinforcement costs, we want to achieve a charging behaviour
that minimises the costs. The results show the same value in all scenarios
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Figure 7.19: Solving times for sensitivity runs. Shaded areas in red indicate that
the respective run did not solve due to numerical troubles.

except for Obj-c. Only using the curtailment needs in the objective function
in Obj-c without the second term of squared component loading leads to
higher reinforcement costs, which is not desired.

Slacks are only introduced to ensure the feasibility of the optimisation
problem. The slack usage should therefore be as low as possible. The results
show that for scenarios Obj-3 and δslack-1, an excessive slack usage occurs.
Interestingly, increasing the weight of the loading term in the objective for
Obj-3 thereby shows higher slack values than a comparably low weighting
of the slack penalty in δslack-1.

Similar to reinforcement costs, optimised charging should also minimise
curtailment needs. The results for the different weighting combinations
show that the values are similar for most scenarios. Only in the case of
scenario Obj-l, where the necessary curtailment is not part of the objective
function, there are extremely high values for the curtailment of feed-in,
inflexible load and EVs. Relatively small in comparison is an increase in
feed-in curtailment in scenarios Obj-2 and Obj-3. The reason is an excessive
use of V2G, leading to high simultaneous charging and discharging of
EVs. For the optimisation, this is a way to decrease feed-in curtailment.
However, after correcting the simultaneous charging and discharging, the
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Figure 7.20: Comparison of sensitivity runs for grids that were solved for all
investigated scenarios, i.e. PV-II and PV-III.
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Table 7.5: Decision criteria for sensitivity scenarios.

Scenario Decision Criterion Acceptable

Base Numerical troubles encountered ✗

δcurt Numerical troubles encountered ✗

δcharge-1 Numerical troubles encountered ✗

δcharge-2 V2G usage prevented ✗

Obj-c Increase in reinforcement costs ✗

Obj-1 ✓

Obj-2 Excessive simultaneous charging and discharging ✗

Obj-3 Excessive usage of slacks ✗

Obj-l Excessive curtailment needs ✗

δslack-1 Excessive usage of slacks ✗

δslack-2 ✓

δslack-3 Numerical troubles encountered ✗

feed-in curtailment increases compared to the other cases. This indicates
that the loading term in the objective should be weighted with a lower
value than the curtailment term if excessive simultaneous charging and
discharging should be prevented. While excessive simultaneous charging
and discharging is not desirable, V2G should still be used if it can reduce
the stress on the grid. With a high weight on additional losses through V2G
like in δcharge-2, V2G usage is completely prevented.

Table 7.5 summarises the sensitivity analysis scenarios and whether they are
acceptable for further use. If not, the reason is given as a decision criterion.
Overall, only the scenarios Obj-1 and δslack-2 yield favourable results in all
investigated categories. To increase robustness, we combine the variations
of both scenarios into a new one, which is also used for the investigations
of the previous section. The final weights are summarised in Tab. 7.6. All
results for this combination of weights (not shown) also comply with all
criteria deemed necessary for an acceptable performance.

Figure 7.21 shows the total charging in feeder Load-I for the sensitivity
runs Obj-c, Obj-l and the combined scenario. In all investigated feeders,
scenarios Obj-2 and Obj-3 show a very similar pattern to Obj-l and the other
sensitivity runs similar charging behaviour as the combined scenario. For
easier interpretability, these other runs are therefore not displayed. Scenario
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Table 7.6: Resulting combination of weights after conducting the sensitivity anal-
ysis.

Scenario δcurt δload δcurt,l δcurt, f δcurt,ev δcharge δslack

Combined 1 10−3 1.0 0.5 0.5 2 102
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Figure 7.21: Charging patterns of sensitivity runs Obj-c, Obj-l and the combined
scenario.

Obj-c shows the highest charging peaks and strong fluctuations in the time
series. Since, in this scenario, only the necessary curtailment is penalised,
there is no incentive to reduce the charging peaks in times where either no
curtailment is necessary or if curtailment cannot be prevented by reducing
the charging power. The other two scenarios show a similar pattern with
lower charging peaks. Only in selected instances, Obj-l shows additional
peaks, like in the late mornings of the 20th and 21st of April. These are
achieved by higher utilisation of V2G in the previous periods; however,
they also result in higher simultaneous charging and discharging.

Overall, the sensitivity analysis shows that optimisation results are relatively
robust if the weights are chosen in a reasonable order of magnitude.

7.3.2 Performance Evaluation

We want to compare the performance of the implemented charging strate-
gies in terms of solving time and memory usage. Figure 7.22 shows the
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Figure 7.22: Comparison of memory allocation and solving time for the different
optimised charging scenarios in all investigated grids.

solve time (left) and memory usage (right) for the investigated levels of
flexibility over the number of buses in the feeders.

Both the solve time and the memory usage increase with the number of
buses, the memory usage shows a linear trend. For the solution time, it is
not clearly distinguishable whether it increases linearly or quadratically
with the number of buses. In a master thesis co-supervised in the course of
this dissertation, a similar analysis showed linear trends for both solving
time and memory usage for a comparable problem formulation [174].

Between the different formulations of EV flexibility, there is no significant
difference visible. For the solving times, EVs V2G tends to show slightly
higher values but the order also changes between different grids. The
memory allocation is slightly higher for scenarios EVs Flex++ and EVs V2G
than for the other two scenarios. Still, the order of magnitude is comparable.
All formulations only contain linear constraints and continuous variables
and therefore perform similarly well. In another master thesis, the more
exact formulation with binary values for EV charging and discharging was
compared to the linear version of the optimisation [113]. In that case, the
solution times were significantly higher and larger grids could not be solved
due to increasingly high memory usage.

Figure 7.23 shows the solving time (left) and memory usage (right) divided
by the number of buses in the feeders for optimisations of different numbers
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Figure 7.23: Comparison of memory allocation and solving time relative to num-
ber of buses in the grid for different number of time steps.

of time steps1. Again, we see linear trends for solving time and memory
usage with increasing number of time steps. Comparing the values for
feeders of different sizes, the solving time per bus seems to increase with
larger grids while the memory usage slightly decreases.

Overall, a linear dependency of solving time and memory usage on both
number of buses and number of simulated timesteps seems favorable for
the investigation of large-scale grids. We furthermore do not see large dif-
ferences between the different model formulations of EV flexibility.

1 The scenarios EVs Flex and EVs V2G were simulated. Since the results showed close to no
difference, they are not further distinguished in the displayed results.
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C A S E S T U D Y I I : S I M U LTA N E O U S I N T E G R AT I O N O F
D E R S

This chapter includes the investigation of the influence of increasing penetrations of
distributed energy resources (DERs) on distribution grid reinforcement costs and
the flexibility potential within the distribution grids. It is based on the published
paper: A. Heider, L. Kundert, B. Schachler and G. Hug, "Grid Reinforcement
Costs with Increasing Penetrations of Distributed Energy Resources", 2023 IEEE
Belgrade PowerTech [175], Copyright ©2023, IEEE. The results for the optimised
charging are updated according to the adapted model formulation.

8.1 distribution grid reinforcement costs

In this case study, we investigate the grid reinforcement costs that are
required to incorporate increasing penetration of DERs. To this extent, our
study investigates the integration of photovoltaics (PV) with battery energy
storage systems (BESS), heat pumps (HPs) and electric vehicles (EVs), both
as single components and in a combined scenario to determine the main
drivers of the costs. Additionally, we compare the uncoordinated operation
with a grid-optimised operation using the flexibility of EVs, HPs and
BESS.

The following sections are structured as follows. Section 8.1.1 gives an
overview on the research design of the study, including the integration of
the DERs into the grids, their operational strategies and the calculation
of grid reinforcement costs. In Section 8.1.2, the results are presented and
discussed.

8.1.1 Research Design

We use a probabilistic approach to approximate the costs of the required
grid reinforcement to incorporate different penetrations of DERs. In a first
step, PV, BESS, EVs and HPs including thermal energy storage (TES) are
randomly connected to residential loads inside the grids. Two different op-

175
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Grid Expansion

Costs (3.1.3)

Distribution Grids (3.1.5)

Operational Strategies -

Reference and Optimised

Integration of DERs

Figure 8.1: Research design of study.

erational strategies are simulated: the reference and an optimised operation.
With the resulting time series, the grid expansion costs are calculated and
the reduction potential of the optimised operation is estimated.

Integration of DERs

In our study, different DERs are randomly distributed to the residential
customers of the investigated grids.

residential pv-systems are randomly connected to residential loads
that do not already own a PV power plant. If BESS are included,
a battery is connected to every residential PV plant, also the ones
already existing in the grids without further PV expansion. PV and
BESS are sized as described in Section 3.4.1, resulting in mean installed
PV capacities of 8.7 kW and mean BESS power and energy capacities
of 5.2 kW and 8.7 kWh.

heat pumps including TES are randomly connected to a pre-specified
share of all residential consumers following the sizing described in
Section 3.3.2. The resulting mean thermal capacity of the HPs is
13.0 kW, and the connected TES has a mean thermal storage size of
18.3 kWh.
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electric vehicles are integrated through home charging points from
the previous chapter. These are randomly added to residential loads.
The added charging points can have nominal charging powers of
PEV

nom ={3.7, 11.0, 22.0} kW. Note that in this way, only the charging
demand at home charging stations is added to the grids. Charging
demand that would occur at work, in public or at high power charging
stations, is not included in this study as it focuses on residential loads.

The DERs are integrated to the status quo grids, further described in 3.1.5.
To gain a better understanding of the influence of the different technologies,
we simulate five different scenarios: 1) PV on its own, 2) PV in combination
with BESS, 3) only HPs, 4) only EVs and 5) the combination of all of them,
added to the initial grid. We furthermore increase the penetration of these
technologies in steps of 10 % from 0 % to 100 %. A penetration of 100 %
thereby means that every residential load in the grid owns the respective
DERs.

Operational Strategies

We investigate two operational strategies for all flexible technologies: ref-
erence and optimised operation. PV plants are not assumed to operate
flexibly on their own. BESS, HPs and EVs, on the other hand, are modelled
in a way that they can adapt their operation. Descriptions for the reference
operation of BESS, HPs and EVs can be found in Sections 3.4.2, 3.3.3 and
3.2.3, respectively. Sections 3.4.4, 3.3.6 and 3.2.6 contain the model formu-
lations used for the optimised operation of BESS, HPs and EVs. For both
battery and thermal storage units, the efficiencies are assumed to be 100 %
to determine the maximum potential to reduce the grid reinforcement costs.
Thus, the ideal formulations are used.

For the optimised operation, the operation of the DERs is optimised for one
day at a time using the optimal power flow formulation introduced in
Chapter 6. As reactive power provision is not the focus of this study, it is
assumed that all flexible units operate at a power factor of 1.0.

Grid Reinforcement Costs

The grid reinforcement costs are calculated using the contingency case
explained in Sections 3.1.2 and 3.1.3. This means that in the load case,
medium voltage (MV)-lines and the high voltage (HV)/MV transformer
are only allowed to be loaded to 50 % of their thermal limit (to account for
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(n-1)-security). For all other components as well as the feed-in case, this
limit amounts to 100 %. The voltage has to stay between 0.9 and 1.1 p.u.
in the grids. Additionally, there are grid-level- and case-specific voltage
bounds which are further detailed in Section 3.1.2. If any of the boundaries
are violated, the heuristic approach of grid reinforcement implemented in
eDisGo [75] is used to solve them and to estimate the required costs (for
further details see Section 3.1.3).

In order to keep the simulation time reasonable, we make use of the fact
that for the necessary grid reinforcement, only the highest overloading or
voltage violation of a component is relevant. Consequently, only time steps
where at least one component shows its highest overloading or voltage
deviation are of interest. To determine these, we simulate the entire year
for the reference operation and three different runs for each grid and
scenario at the maximum penetration of 100 %. Different runs for the same
scenario, grid and penetration of DERs only differ in the seed that is used
for the random draws. Therefore, the installed capacities at specific sites
differ, and for penetrations below 100 %, the locations of DERs can differ
as well. Since the optimisation is conducted for entire days, the run with
the largest number of days with at least one highest overloading or voltage
violation of a component is chosen from the three runs. Only the days with
grid violations of this run are later evaluated for the respective grid and
scenario.

For the reference operation, the simulations are repeated ten times. From
these ten runs, the run with the lowest root mean square deviation from the
mean of all runs is chosen as a representative run. For this representative
run, we additionally analyse the optimised operation.

8.1.2 Results and Discussion

In the following, we present the results along the DER operations, grid
reinforcement costs and cost reduction by optimised operation.

DER Operations

Fig. 8.2 shows the mean power consumption of BESS (when combined with
PV), EVs and HPs over a day in the reference (top) and optimised (bottom)
operation with 100 % penetration of DERs across all the grids. The grey area
around the mean thereby displays the standard deviation for the different
simulated days. For the combination of PV and BESS, we see a shift in BESS
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Figure 8.2: Mean power consumption of flexibility options over a day for refer-
ence (top) and optimised (bottom) operation. The grey areas denote
the standard deviation.

charging from morning hours to noon. In this way, the local PV-production
peak can be reduced. Similar to the reference operation, the discharging
process shows a peak in the evening hours, when the residential load is
highest. The reference charging of EVs shows a peak in the evening hours
when most cars arrive at home. This peak coincides with the already existing
load peak of residential loads. Therefore, the optimised operation shifts
the charging demand towards early morning hours and, where possible, to
noon hours. Since few cars are parked at home during the day, the peak
in the morning hours is more pronounced. The reference operation of HPs
shows peaks in the morning and evening. To avoid coinciding with existing
peaks in residential load and to make use of local PV-production and
high coefficient of performance (COP)-values around noon, the demand
is shifted into these hours by the optimised operation. When all DERs are
integrated, the reference operation shows the highest consumption during
daytime around noon. The optimised operation even further increases the
noon peak to leverage the PV in-feed and reduces consumption in the
evening hours.
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Grid Reinforcement Costs

Fig. 8.3 shows the grid reinforcement costs for all six grids when all compo-
nents operate with the reference strategy. The scenario with only PV is not
displayed as the results are essentially the same as for the case of both PV
and BESS. This leads to the conclusion that the operation of BESS, where the
self-consumption is maximised, does not reduce the stress on the distribu-
tion grids. In some cases, including BESS even leads to additional reinforce-
ment needs for individual MV-low voltage (LV)-transformers. However, the
overall change in reinforcement costs is minimal. The results show that the
integration of HPs causes the highest grid reinforcement costs. When all
components are simultaneously integrated, the costs of integrating individ-
ual types of components do not accumulate but the total costs mostly reflect
the costs of the HP integration. In some cases, e.g. for high penetrations
in grid PV-2, synergies between PV with BESS and HPs reduce the costs
compared to the integration of only HPs.

Fig. 8.4 shows the marginal grid reinforcement costs for additional capacity
of the different DERs. To obtain these values, we divide the additional
costs for each step of the calculation (e.g. from 10 % to 20 % penetration)
by the added capacity of the respective component. All simulated values
for PV and BESS in case of the reference operation are displayed on the
left and for HPs on the right. For the scenario with PV and BESS, the
marginal costs increase until an installed capacity of ∼30 MW. At higher
capacities, it stabilises around ∼100 €/kW. There is no significant increase
at small installed capacities visible for EVs (not shown) and HPs, but
the values scatter around mean values already for small penetrations. A
possible explanation is that most grids are designed for the existing load
in the grid. Some parts of the grids therefore have free capacity for feed-in
technologies. With increased penetrations, more and more components
reach their limits, which results in increasing costs per newly installed kW.
If all components have reached their hosting capacities for feed-in, in this
case around ∼30 MW, the marginal costs plateau. For additional load, on
the other hand, the capacities are already close to their limits. Therefore, no
such increase in marginal costs at low additionally installed capacities is
visible.

Another effect observable in the scatter plots is that the results show com-
parably high marginal costs around an installed capacity of ∼40 MW for
the grid Load-1 and a further increase in PV and BESS capacities. A similar
effect is also visible for the grid PV-2 around an added capacity of HPs of
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Figure 8.3: Grid expansion costs for the simulated scenarios with reference op-
eration. For PV with BESS, the costs are plotted against the installed
PV capacity and for the integration of all DERs the costs are plotted
against the sum of installed capacities of PV, HPs and EVs.

∼20 MW. Several other grids show the same effect with increased penetra-
tions of EVs and HPs. These spikes can occur when very long MV-lines
start to be overloaded and need to be replaced. For the displayed case
of grid Load-1 with increased penetrations of PV and BESS, additionally
long LV-lines start to be overloaded as well, causing the high marginal
cost values. In the case of grid PV-2 and uptake of HPs, overloading of the
HV-MV-transformer in addition to long MV-lines is another reason for the
observed cost spikes.

Cost Reduction by Optimised Operation

The boxplots in Fig. 8.5 show the marginal grid reinforcement costs for
reference and optimised operation of PV with BESS, EVs and HPs. The
light-blue triangles display the mean values. For readability, the plot is
cropped at the y-axis and does not show all outliers. The results for the
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Figure 8.4: Marginal grid reinforcement costs per added capacity of DERs against
the installed capacity for the reference operation.

reference operation show the highest marginal cost for HPs with a mean of
185.1 €/kW and values up to 2203.2 €/kW. Additional PV capacities cause
marginal costs with a mean of 74.04 €/kW and maximum values of up
to 541.6 €/kW. The lowest values are observed for EVs with a mean of
19.1 €/kW and maximum values up to 170.1 €/kW. However, it has to be
mentioned that we only account for home charging and omit the charging
demand that would occur at other charging stations. Therefore, the marginal
costs accounting for all charging use cases are likely significantly higher.
First, a larger overall charging demand occurs when also accounting for the
other use cases. And second, the charging powers are higher, especially for
public and high power charging. In [86], median values of 46-1385 CHF/kW
were obtained for HPs, 51-213 CHF/kW for PV and 34-143 CHF/kW for
EVs. Comparing these with the median of every step of increase and grid,
we see comparable values in our simulations: 0.0-1493.3 €/kW for HPs, 0.8-
522.2 €/kW for PV and 1.5-133.3 €/kW for EVs. The higher values for HPs
can be explained by the fact that we additionally account for the MV. In fact,
we see a large share of the costs in the MV in that case. The lower values for
the case with EVs might be due to the limitation on home charging.

The optimised operation shows different effects for the PV with BESS,
EVs and HPs. Note that the number of simulated runs is smaller for the
optimised operation since this case is only simulated for one representative
run instead of ten as is done for the reference operation. While we choose
the run closest to the mean, the smaller sample size with one occurrence
per grid and step of increase of the penetration still influences the results.
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Figure 8.5: Boxplots showing the marginal grid reinforcement costs per added
capacity of DERs for the reference (left) and optimised (right) opera-
tion. The light-blue triangles mark the mean values.

The optimised operation of HPs reduces the mean marginal cost by 30.5 %
to 128.6 €/kW, and the median by 10.8 %. However, the relative decrease in
costs depends on the penetration of HPs. As a trend, the reduction potential
decreases with increasing penetrations. For lower penetrations, on the other
hand, the optimised operation leads to significantly decreased costs. For
the grid PV-1, the decrease in cost is very high, because of the synergies
with the previously existing PV. PV with BESS achieve a reduction of 46.1 %
of mean marginal cost to 38.6 €/kW and even a reduction of 63.7 % of the
median with the optimised operation compared to the reference operation.
For EVs, the optimised operation reduces the marginal costs to nearly
0.0 €/kW.

Fig. 8.6 shows the sum of grid reinforcement costs of all grids for reference
and optimised operation of the representative run divided into costs for
the different grid levels. The integration of all DERs at the same time leads
to grid reinforcement costs of 39.4 Mio. € summed up over all grids, the
integration of only HPs to 38.8 Mio. € for a penetration of 100 %. For PV
with BESS, the costs at a 100 % penetration amount to 17.1 Mio. € and for
EVs to 9.9 Mio. € summed up over all grids. For EVs and HPs, a large share
of these cost occur in the MV. For PV with BESS, on the other hand, almost
no costs occur at this voltage level. The reason is the different operational
constraints for load and for feed-in. For load, the (n-1)-security constraint
leads to a maximum allowed loading of 50 % in the open rings of the MV
whereas for feed-in, a loading of 100 % is allowed since feed-in can be
curtailed in case of overloading or a fault. Therefore, there is more free
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Figure 8.6: Sum of grid reinforcement costs for all grids divided into the different
grid levels for reference and optimised operation.

capacity for PV in the MV than for the technologies that lead to additional
load.

In all cases, the optimised operation reduces the grid reinforcement costs.
The most significant cost decrease compared to reference operation occurs
for EVs. Nearly all required grid reinforcement can be deferred, reducing
the costs by almost 99 %. For PV with BESS, the reduction summed over
all grids and penetrations amounts to 58.8 % of the costs with reference
operation. However, with higher penetrations, the reduction decreases.
There are relative reductions of up to 88.9 % of the costs with the reference
operation for small penetrations. The reduction decreases to 51.2 % for a
penetration of 100 %. The same trend holds for HPs and the combination
of all investigated DERs as well. For HPs, the mean decrease in costs over
all penetrations and grids is equal to 38.9 % of the costs with reference
operation. In the case of 10 % penetration, the reduction reaches 99.3 %
whereas this value is reduced to 27.8 % for a penetration of 100 %. In case of
a combined increase of PV with BESS, EVs and HPs, the mean reduction of
costs over the sum of all penetrations and grids equals 50.7 %. The reduction
can reach up to 97.0 % for low penetrations. Again this value is significantly
lower for a penetration of 100 %, amounting to 39.8 % reduction compared
to the costs with reference operation.

This decrease in relative reduction with increasing penetrations of DERs in-
dicates a saturation effect in the grids. With low penetrations, the flexibility
to shift demand and feed-in effectively avoids grid issues. However, with
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increasing penetrations, even with the ability to shift demand and feed-in,
the grids reach the limit of their hosting capacities, leading to a limited
potential to reduce costs. Still, even at very high penetrations, significant
cost reductions are possible with an optimised operation of decentralised
flexibility options.

The optimised charging does not necessarily reflect the minimum-cost solu-
tion. One reason is that losses are neglected in the chosen formulation. Since
the losses grow quadratically with the current, they are especially high in
cases of high penetrations of HPs and EVs as additional load. Even though
the values are small compared to the consumption of these technologies,
they accumulate for underlying elements. In situations with high load, it
can therefore happen, that when accounting for the losses, some elements
show an overloading whereas neglecting the losses leads to a situation
without overloading issues. In these situations, the optimisation, which
neglects losses, might schedule the flexibility options in a way that leads
to overloading and consequently grid reinforcement needs. Another factor
is that the chosen objective is only a proxy to reduce the grid reinforce-
ment costs. It reduces continuous variables (the necessary curtailment and
component loading) whereas the grid reinforcement is a discrete process.
Therefore, there might be situations where the optimization reduces loading
of components that are not close to a critical transition and accepts higher
loading for another component that then requires reinforcement. However,
in aggregate, the optimised charging still shows a significant reduction in
costs and therefore provides a viable solution.
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D I S C U S S I O N

In this chapter, we want to discuss the results of the presented case studies
in Sections 9.1 and 9.2 and put them into perspective with previous work.
In Section 9.3, we critically reflect on the chosen model formulation .

9.1 influence of electric vehicles

In the first case study, we investigated the influence of different EV charging
strategies on the grid integration of EVs.

The potential of flexible EV charging to help the integration of renewable
energy sources (RES) into the distribution grids proves to be limited in
our investigations. While the necessary feed-in curtailment can be slightly
reduced, the reduction only amounts to 1.7 % of the overall feed-in cur-
tailment with the highest level of EV flexibility. The grid reinforcement
needs caused by the integration of RES can also also only be partly avoided
(mainly in PV-dominated grids) and the costs with the integration of EVs
always exceeds the costs without. From our investigations we therefore
conclude that the synergies of flexible EV charging and RES are limited on
the lower grid levels. Only local PV generation can be effectively utilised
by EVs. Using the generation of larger RES that are directly connected to
the transformer stations or to the MV, on the other hand, does not relieve
the local distribution grids. Our results therefore imply that the potential
of smart EV charging to help the integration of RES on a local scale is
limited.

However, this does not mean that EV flexibility does not have the potential
to help with RES integration on a larger scale. The previous investigations of
Chapter 4 found that the flexibility potential can be significantly increased
when allowing shifting over standing times and the utilisation of vehicle-to-
grid (V2G). The positive effects of such flexibility provided to the overlying
grids and entire system have been proven in various studies. It was able
to significantly reduce the RES curtailment (by up to 40 %) [151], [157],
[176]. Furthermore, production costs for additional electricity for EV charg-
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ing [176] and total system costs [102], [157] could be reduced significantly.
So on the system level, EV flexibility can contribute largely.

However, the system wide flexibility procurement might come at the cost
of increased stress on the distribution grids [22], [23], [96]. To this respect,
our results show that the charging strategy highly influences the additional
stress that the integration of EVs poses on distribution grids (DGs) and the
required countermeasures. With an uncoordinated plug-and-charge, both
the necessary load curtailment and the grid reinforcement costs show high
values. Load curtailment can be largely avoided through EV flexibility with
a reduction of up to 88.6 %. The additional reinforcement needs through
EV charging can also be reduced by up to 80.2 %. In [95], the reinforcement
costs could even be avoided almost entirely by real-time control of the
EVs. So overall, coordinated EV charging shows great potential to limit the
additionally required reinforcement caused by the integration of EVs. Shift-
ing the charging demand within the originally scheduled charging session
thereby already shows the largest reduction potential. Further increasing
EV flexibility by shifting between standing times and the utilisation of V2G
only showed marginal improvement. Therefore, shifting within the stand-
ing times seems to provide sufficient flexibility to limit grid reinforcement
needs.

From a practical point of view, the simple rule-based strategy of reduced
charging thereby performs similarly well as the grid-optimised charging
strategy. Significant decrease of grid issues with a simple balanced charging
strategy was also found in [96]. In [95], the authors similarly found a signifi-
cant decrease of grid reinforcement costs with a reduced charging. However,
their real time optimised operation could even further decrease the rein-
forcement costs to very low values even for 100 % EV penetration. However,
grid reinforcement also occurred without EV integration in their case, im-
plying that their grids might not have been designed for the integrated
charging demand time series. For already highly stressed grids, a reduced
operation might therefore not be as beneficial as a smart control. Still, due
to its simplicity, the reduced charging seems to be a viable alternative to
an optimised operation concerning the reduction of grid reinforcement
costs.

The majority of additional grid reinforcement in our investigations occurred
in the LV, a smaller part at MV/LV-transformers. A higher increase in costs
in the LV than in the MV was also found in a previous study on real German
distribution grids [22]. However, they also found a significant cost increase
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in the MV, which was not the case in our study. One reason could be their
more conservative approach to grid expansion, using simultaneity factors.
These assumed that the additional demand of new loads (such as EVs and
HPs) is added to the existing peak load. However, they also mentioned
that the analyses of time series data showed a delay of new and existing
peaks [22]. Therefore, the necessary reinforcement was likely overestimated.
Furthermore, they investigated the simultaneous integration of EVs and
HPs while our study focused on the integration of EVs alone. In [95], they
also found a higher sensitivity of MV grids towards the integration of EVs.
However, most of the grids that showed low integration capabilities were
urban, which are not accounted for in our investigations. It has to be noted,
that the results in the literature also largely differ. As an example, the effects
of EV integration are stronger in rural areas in some studies (e.g. [86], [95],
[96]) while others attest a higher influence in urban areas (e.g. [22], [23]).
The results therefore seem to depend strongly on the investigated grids and
simulation setups.

Lastly, the results show that even with the highest level of EV flexibility,
grid issues cannot be fully avoided at the simulated penetration of EVs.
This means that either load and feed-in have to be curtailed or the grids
need reinforcement to avoid violations of the grid constraints. In contrast,
the grid reinforcement costs for the integration of EVs could almost be
fully avoided in [95]. However, they only accounted for home and work
charging [177], while in our investigations, part of the reinforcement costs
are caused by inflexible high power charging (HPC). This part of the costs
cannot be reduced since in case of HPC, it is assumed that the priority
lies in the fulfillment of the service and charging demand can therefore
not be shifted within these charging sessions. In the second case study,
where we only investigate the effect of home charging, we achieve similarly
high reduction potentials as in [95]. Our results therefore indicate that
when accounting for public and high power charging, the distribution grids
need reinforcement to a certain extent. Using flexibility can reduce the
reinforcement needs but not fully avoid them.

9.2 interplay of ders

In a second case study, we analysed the necessary grid reinforcement for
increasing penetrations of residential PV, BESS, EVs and HPs in six different
MV-grids with underlying LV-grids. To gain a better understanding of the
main cost drivers, we simulated scenarios for an uptake of PV, PV with
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BESS, HPs and EVs on their own as well as a combined scenario with all
investigated DERs. The different technologies were randomly added to the
residential loads of the grids and the resulting costs were calculated. For
one representative run per grid, we additionally calculated the costs for an
optimised operation of the DERs to quantify the potential decrease in grid
reinforcement costs through utilisation of the DER´s flexibility. Our results
help to explore different effects for the integration of DERs into typical
DGs. Furthermore, the calculated values can be used to incorporate DG
reinforcement caused by residential DERs into large-scale energy system
models.

The results show the highest absolute and marginal costs for integrating
HPs and the lowest for integrating EVs. In [86], the authors also found
HPs to cause the highest specific costs at a mean. However, PV and EVs
showed similar distributions. The difference might be caused by the fact,
that we only account for home charging, so a limited share of the total
charging demand in our study. If other use cases are included as well, the
specific costs might increase and costs might also add up differently in
the combined scenario, since charging would occur at different locations
and cause violations in other parts of the grids. In the current setup, the
costs of the combined scenario largely reflect the costs induced by the
integration of HPs and are only slightly higher than in the case of HPs
only. This means, that peaks of the different DERs do not add up but HP
peaks determine the necessary grid reinforcement. In [86], the costs for a
combination of EVs and HPs also showed only slightly higher values than
for the single investigations. However, including PV increased the costs
significantly in their case. The reason might be that they use a worst-case
approach with simultaneity factors to determined the grid reinforcement
costs. With this, there is limited room to account for synergies which can
be assessed with the time series based approach we use. Furthermore, they
include relatively more PV capacities. In future investigations, it would
therefore be interesting to investigate whether PV has a higher influence
on costs in the combined scenario if higher capacities are installed per
household. In our investigations, a large share of the costs occurs in the MV
for EVs and HPs, whereas the integration of PV mainly leads to costs in the
LV. These results are different to the ones in the previous case study, where
the costs of integrating EVs occurred mainly in the LV. This is because the
first case study is undertaken under normal operating conditions while the
second accounts for (n-1)-security. MV components can therefore only be
loaded to 50 % in the load case, leading to higher reinforcement needs in
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the MV. When operating the grids (n-1)-secure, MV grids might also need
higher reinforcements for the integration of new loads.

Investigating the marginal cost of integrating the different DERs into the
grids, we also see a difference between the integration of PV and of the load
technologies. For PV, an increase in marginal costs for small penetrations
occurs. The reason is that the grids were initially designed to accommodate
the load. Therefore, there is free capacity for feed-in technologies at low
penetrations. More and more of this free capacity is used with increasing
penetrations, leading to increasing marginal cost, which then plateaus at a
particular value. For EVs and HPs, on the other hand, the marginal costs
scatter around a particular value already at small penetrations as there is
only limited free capacity for additional load and therefore no reduced
marginal costs for low penetrations. An effect visible for all DERs are peaks
in the marginal costs when long MV-lines or the HV-MV-transformer reach
their limits and need to be reinforced.

The optimised operation shifts the demand to noon hours to use local
PV-generation, thereby reducing the need for distribution capacities within
the grids. For EVs, the demand is additionally moved to early morning
hours since many vehicles are not parked at home during the daytime. The
potential cost reduction by an optimised operation differs by the type of
the DER and depends on their penetration within the grids. Except for
EVs, where the optimised operation leads to cost reductions of almost 99 %
even at a penetration of 100 %, the relative reduction in costs compared
to the reference operation decreases with increasing penetrations of DERs.
This effect indicates that there is a certain saturation effect within the
grids. For low penetrations, the shift of demand and feed-in can mitigate
reinforcement needs to a large extent. For high penetrations, the grids
reach their limits even with an optimised operation of the DERs, leading
to a limited reduction potential. However, it is still possible to significantly
reduce the necessary reinforcement with an optimised operation, even at
high penetrations. For the considered grids and for HPs, the costs can be
reduced by 13.6 %, for PV with BESS by 45.2 % and for the combination of
all DERs by 23.6 % at a penetration of 100 %. In [159], the authors also found
a significant decrease of grid reinforcement costs with a smart operation of
EVs and HPs. They furthermore showed that additional voltage regulation
can further decrease the costs and the combination of all measures reduced
the reinforcement costs by 66 %. It would therefore be interesting to include
voltage regulation in future investigations and compare the effect in the
investigated distribution grids.
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This research focused residential DERs and their effect on the grid rein-
forcement costs. In future work, the study could furthermore be expanded
to other loads and operational approaches, namely other EV charging use
cases, industrial demand response and large scale BESS and HPs. Further-
more, it would be interesting to study the trade-off between flexibility
procurement to reduce the grid reinforcement in the DGs and flexibility
provision to overlying grid levels.

9.3 limitations

In order to handle the high geographical and temporal resolution, certain
simplifying assumptions and modelling decisions were made. In this section,
we want to critically reflect on the limitations in the model formulation and
the effects on the results.

First, the losses are neglected in the chosen model formulation. While this
is a valid assumption for grids under normal conditions, the losses can
become significantly more important in a situation with highly loaded
grids. In our simulation setup, high shares of DERs are integrated into
status quo grids, thus creating situations with such high loading. Losses
might therefore be relatively high. For the estimated curtailment needs, the
load curtailment will be underestimated while feed-in curtailment might
be overestimated since losses constitute additional load. For the optimised
operation, there might be situations where neglecting the losses leads to a
situation without violations of the grid while the losses create overloading
or voltage issues. However, the second term in the objective function that
minimises the virtual loading of the component without accounting for
curtailment should prevent that these situations occur frequently. A master
thesis that was co-supervised during this PhD enhanced the introduced
problem formulations and uses a second order cone relaxation that accounts
for losses in the power flow [174]. For future investigations, we propose to
use the updated approach and compare the results of the linearised optimal
power flow with the second order cone version to estimate the trade-off
between computational burden and performance.

Furthermore, we assume a balanced operation of the system, which is not
necessarily the case, especially in LV grids. However, larger consumers like
11 kW chargers are connected to all three phases. Furthermore, assuming a
balanced operation is a necessary and common simplification for large-scale
studies.
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Lastly, the chosen objective is only a proxy to minimise grid reinforcement
needs. A direct minimisation would require integer values since the number
of new lines and transformers is a discrete value. Including these in the
optimisation would increase the complexity to an extent that the large-scale
grids that are the basis of our investigations, are no longer solvable (see
also [113]). While the chosen model formulation successfully decreased the
reinforcement costs, the obtained values are likely not the global optimum. It
would be interesting to investigate the difference in performance for smaller
systems to estimate the gap between the introduced model formulation and
a direct minimisation of the reinforcement costs.





10
S U M M A RY A N D C O N C L U S I O N S

We investigated the geographic flexibility needs in German distribution
grids with increasing shares of DERs. We therefore investigated six differ-
ently composed MV grids with underlying LV grids and calculated the
necessary grid reinforcement to incorporate different shares and combina-
tions of EVs, HPs, PV and BESS. We furthermore estimated the potential
of a smart operation using the flexibility of EVs, HPs and BESS to de-
crease the necessary grid reinforcement. Specific attention was thereby
given to EV flexibility because of their large charging powers and storage
capacities.

Our results showed that even with a smart operation of DERs, grid rein-
forcements are necessary. However, these can be delayed when using DER
flexibility and reduced by almost one fourth for a 100 % penetration of
EVs, HPs, PV and BESS in households. A delay of necessary reinforcements
might become especially interesting when a large share of the German
distribution grids faces reinforcement needs and resources such as technical
material and skilled labour are limited.

For the combined integration of household DERs, heat pumps proved to
be the main cost driver causing the highest specific and absolute costs.
The total costs were much lower than the sum of the individual DERs and
largely resembled the costs of HPs on their own. This result stresses the
importance of a combined analysis of all DERs since they can be managed
in a way that peaks do not necessarily add up.

The more detailed investigations of EVs, including charging at work and
public charging stations in addition to home charging, showed that shift-
ing within the originally scheduled charging session already significantly
reduces the necessary grid reinforcement. Furthermore, a rule-based re-
duced charging yields similar reduction potentials and might be a simple
alternative for the centrally optimised charging with an easier real-world
implementation not requiring any communication between the charging sta-
tions. Increasing the flexibility further by allowing shifting between parking
times and V2G lead only to marginal improvements in grid reinforcement
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costs but increased the available flexibility potential to overlying grids sig-
nificantly. In the following Part III, we investigate in how far this flexibility
can reduce national storage requirements on different time scales, which
are defined to measure the temporal flexibility needs in renewable power
systems.



Part III

T E M P O R A L F L E X I B I L I T Y N E E D S I N T H E
N AT I O N A L S Y S T E M
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M O T I VAT I O N A N D R E L AT E D W O R K

This part of the thesis is based on the working manuscript: A. Heider, M. Genena,
B. Schachler, P. Blechinger and G. Hug, "Flexibility needs in a 100% renew-
able German power system with growing shares of decentralised sector coupling
technologies" [116].

11.1 introduction

The future German power system will rely heavily on the generation of
variable renewable energy sources (VRES), namely photovoltaics (PV) and
wind [178]. Unlike thermal power plants, which provide a dispatchable
and continuous electricity supply, the power output from VRES is intermit-
tent and more difficult to predict. Balancing supply and demand therefore
becomes more challenging as now both demand and supply are uncer-
tain, and need to be balanced. Consequently, there is a growing need for
flexibility in the system [1].

Simultaneously, one of the primary source of flexibility, thermal power
plants, are being replaced by VRES. With a growing need for flexibility
and decreasing provision from the supply side, the changing power system
requires a paradigm shift: from flexible generation following inflexible
demand to flexible demand and storage consuming inflexible generation.
Sector coupling technologies are one possible source of such flexible de-
mand. More and more of these technologies, such as electric vehicles (EVs)
and heat pumps (HPs), are introduced to the power system to electrify the
transport and heating sectors. These new consumers increase the electricity
demand, and are also likely to increase the need for flexibility when uncon-
trolled [38]. On the other hand, EVs and HPs can provide flexibility to the
system as they can shift their demand within certain limits [2].

The key for a power system based on high shares of VRES is to provide
enough flexibility. However, there is no clear and shared definition and
means to quantify flexibility needs and availability. Yet, such an under-
standing is crucial for effectively incentivising and providing flexibility to
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the system. Furthermore, it is equally important to quantify the flexibility
potential of emerging technologies to estimate their possible contribution to
cover future flexibility needs. In the scope of this study, we introduce a new
flexibility quantification method based on linear optimisation to minimise
energy shifts on different timescales1. It facilitates the determination of
the system’s requirements for load shifting and storage independent from
specific technologies and the investigation of the contribution of individual
flexibility options to supply these flexibility needs. With this approach, we
evaluate the potential of new loads (EVs and HPs) to supply the flexibility
needs in the system and showcase the utilisation of the new method to
address the following questions:

• What temporal flexibility needs in terms of energy shifting are to be
expected in a 100 % renewable energy (RE) system in Germany?

• How do these flexibility needs change with the deployment of new
consumers (EVs and HPs)?

• What potential do these new consumers offer to reduce the flexibility
needs?

The remainder of this part is structured as follows: Section 11.2 gives an
overview over existing modelling approaches to determine the flexibility
potential from the demand side and system flexibility needs. Chapter 12 in-
troduces the newly developed model and flexibility indicators considered in
the evaluation. Chapter 13 includes the case study setup in Section 13.1 and
introduces the investigated scenarios and results - including the influence of
the generation mix in Section 13.2, the influence of decentralised flexibility
options (DFOs) in Section 13.3 and a combined analysis in Section 13.4.
In Section 13.5, we investigate the sensitivities with respect to the most
important model parameters and input data. Chapter 14 discusses results
and limitations. Finally, conclusions are drawn in Chapter 15.

11.2 background

In the literature, different approaches to quantify the flexibility potential
from the demand side and flexibility needs have been introduced. In this
section, we provide an overview of relevant works.

1 The code is openly accessible online under https://github.com/AnyaHe/SEM.git.

https://github.com/AnyaHe/SEM.git
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Table 11.1: Methodologies to quantify flexibility potential from the demand side

Flexibility Metric Method References

Change and duration of
power increase or decrease

Energy flexibility envelopes from
simulations or measurements

[114], [146],
[180]

Maximum power, shiftable
energy and recovery time

Simulations, detailed modelling
of HPs

[143]

Storage capacity, storage
efficiency and power shift-
ing capacity

Simulations, detailed modelling
of buildings

[181]

Storage formulation with
time-varying power and
energy constraints

Linear programming [182], [183]

Demand shifting within
delay time frame

Linear programming [184]–[186]

Reduction in system flexi-
bility needs

Energy and power flexibility en-
velopes from simulations, linear
programming

This work

11.2.1 Flexibility Potential of the Demand Side

Table 11.1 summarises selected ways to quantify the flexibility potential of
the demand side, their underlying methodology and relevant references
for each. Generally, quantifying the flexibility potential of the demand side
can be further subdivided into detailed modelling of specific technologies
or buildings and the more aggregated representation for energy system
modelling.

In a comparison of different approaches to quantify the flexibility of energy
use in buildings, temporal flexibility, the amplitude of possible power
change and the associated costs are identified as common aspects of energy
flexibility [179]. As our work focuses on the technical aspect of flexibility,
we omit the cost factor.

A concept of capturing the available flexibility is the determination of
energy flexibility envelopes which are obtained from simulations or real
measurements. The envelopes consist of the accumulated energy consump-
tion of the flexible units for two extreme cases: the minimum represents the
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minimum consumption and/or consumption as late as possible, and the
maximum represents the maximum consumption and/or consumption as
early as possible. In [180], only the feasible duration of forced operation
at nominal capacity and the feasible delay time were extracted. In later
applications, constant deviations from the undisturbed operation and the
maximum duration during which these deviations can be sustained were
evaluated [114], [146]. The concept was applied to combined heat and
power (CHP) plants with thermal energy storage (TES) [180], residential
appliances (washing machines, tumble dryers, dishwashers, domestic hot
water buffers and electric vehicles) in a pilot project in Belgium [114] and to
a building with different combinations of PV, EV, HP and TES [146].

The recovery time was added as a dimension of quantifying flexibility in
addition to maximum power and shiftable energy by [143]. It describes
the required time until the system returns to an undisturbed operation
following a trigger signal. The authors simulated the reaction of a pool of
heat pumps to different trigger signals to extract the values for the flexibility
indicators.

Another concept to determine the flexibility potential for different residen-
tial building types is quantifying the available structural storage capacity,
storage efficiency and power shifting capacity [181]. The structural storage
capacity is the difference in heating energy consumption between flexible
and undisturbed operations. The storage efficiency is defined as the share
of the heat energy stored which can later be used for supplying the undis-
turbed heat demand with respect to the total heat energy stored during the
demand response event. The shifting capacity is a measure of instantaneous
energy flexibility. It describes the relation between the change in heating
power and the possible duration to sustain the change.

Energy system modelling has also brought forward approaches to quan-
tify and integrate demand side flexibility into the models. Large-scale
energy system models require a higher level of abstraction as the inclu-
sion of detailed building or appliance models significantly increases the
complexity of the models. A possibility for such aggregation is to use a
storage-like linear formulation for demand side management (DSM) [182].
This buffer storage has time variant minimum and maximum limits for
shiftable power and energy consumption. The model was later extended
using additional constraints for the flexible share of the load, restricting the
shiftable amount to be within a minimum and maximum share of the total
load capacity [183].
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Another possibility is to directly model flexible demand with a linear
formulation for DSM where the demand can be shifted within a specific
time range L. To ensure that the overall consumption stays the same, one can
either use an energy balance formulation [184] or link the down-regulation
to time steps of up-regulation which can also account for the maximum
shifting time [185]. A similar approach was used to study the influence of
increased demand-side flexibility on the market and variable renewable
energy integration in [186]. The authors introduced the fraction ∆d of the
load that can be shifted within the day as a flexibility metric. The daily
consumption thereby stays constant.

11.2.2 Quantification of Flexibility Needs

In addition to the quantification of the flexibility potential of specific sources,
there have also been studies to quantify the flexibility needs of a system.
Table 11.3 summarises selected flexibility metrics and the relevant refer-
ences.

Table 11.3: Methodologies to quantify flexibility needs

Flexibility Metric Method References

Storage energy capacity, balancing
energy and power

Time series analysis [187], [188]

Energy shifted by storage duration Heuristics, time series
analysis

[189], [190]

Storage energy and power capacity
dependent on VRES penetration

Literature review [3], [191]

Energy shifted by storage type Linear programming This work

Most approaches use simple time series analysis to evaluate the flexibility
needs. In a study on the European energy system, the seasonal flexibility
needs were assessed by calculating the required seasonal storage to balance
monthly mismatches between supply and demand [187]. The seasonal
flexibility needs were found to be highly dependent on the share of wind
and PV feed-in and lowest for an optimal mix of 55 % wind and 45 % PV
generation in a wind-plus-solar-only scenario. In a second study, the authors
added the possibility for excess generation and assessed the flexibility needs
to balance hourly and daily mismatches for different optimal mixes of wind
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and PV generation [188]. They found that excess generation can significantly
decrease the required storage energy capacity and balancing needs.

Another option is to model flexibility needs by determining the required
equivalent storages for different storage durations. It was applied to differ-
ent locations and varying penetrations of VRES and shares of wind in [189].
The authors investigated daily, weekly, monthly, and seasonal storage needs.
Two dimensionless metrics were defined: the storage magnitude index and
storage duration index. The storage magnitude index describes the per-
centage of total demand met by stored energy. The storage duration index
provides an indication of the average time the energy needs to be stored.
The authors found that seasonal balancing needs highly depend on the
location and share of wind in the VRES mix.

Similarly, the storage needs of a fully renewable Austrian power system in
2030 were determined by summing the positive residual load unbalance on
a daily, weekly, monthly and annual time scale [190]. It was found that flex-
ibility needs increase compared to the current state of the system, with the
highest increase in the annual flexibility needs. Furthermore, the flexibility
provision from different flexibility options was investigated. The results
show that the demand side can provide the flexibility to balance the short-
term imbalances but cannot contribute to the seasonal balancing.

Two literature reviews summarised storage requirements in different sys-
tems to compare the flexibility needs as a function of the VRES penetra-
tion [3], [191]. Both studies found that the storage power capacity increases
linearly with the VRES penetration and, in [191], the storage energy ca-
pacity increases exponentially. Furthermore, [191] examined the influence
of the share of PV and wind in the mix of VRES on storage requirements
and found that high PV scenarios required higher storage energy and
power capacities compared to high wind scenarios in both Europe and the
U.S..

In summary, there exist approaches to model both the flexibility potential
from the demand side and the flexibility needs from a system perspective.
However, they have not been brought together which is the focus of this
chapter. In our work, we bridge the gap between the approaches from device
and energy system modelling, which focus on the flexibility potential from
the demand side, and the methods based on time series analysis, which
focus on the system flexibility needs. This allows us to directly assess the
influence of demand flexibility on the system flexibility needs. To this extent,
we introduce a linear optimisation model based on the method introduced
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by [189] but expand it by also including EV and HP models. Using linear
optimisation allows leveraging existing formulations for different flexibility
options used in energy system modelling and assessing their influence on
the system flexibility needs.
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M E T H O D O L O G Y - S T O R A G E E Q U I VA L E N T M O D E L

The storage equivalent model uses the idea of quantifying the energy shifts
on different timescales needed to balance electricity supply and demand
as presented by [189]. The basic model is detailed in Section 12.1. We
furthermore expand the model with flexibility from EVs and HPs. Lastly,
Section 12.2 illustrates the evaluated flexibility indicators.

12.1 formulation of the storage equivalent model

In the proposed model, we define a set of storage units S that operate on
different time horizons h(s). The idea is that each storage can only shift
energy within the respective time horizon. For example, a daily storage can
only perform shifting within the day, not to the next day.

The objective of the proposed model is to minimise the shifted energy, i.e.
demand supplied by the storage units, by summing the discharging powers
pdis

s,t of the storage units over the different time scales s multiplied with
weighting factors δs:

min ∑
t∈T

∑
s∈S

(
δs · ∑

t∈T
pdis

s,t

)
. (12.1)

The weighting factors should thereby be chosen in a way that prioritises the
usage of short-term storage over long-term storage units. The discharging
is determined by:

pdis
s,t ≥ −ps,t ∀s ∈ S, t ∈ T, (12.2)

pdis
s,t ≥ 0 ∀s ∈ S, t ∈ T, (12.3)

where ps,t is the (dis-)charging power of the storage unit s. Negative val-
ues of ps,t imply discharging and positive values charging of the storage
units.

207
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The storage units are modelled as ideal storage units, i.e. with a round
trip efficiency of 100 %. The energy level els,t of each storage type s is thus
calculated by:

els,t = els,t−1 + ps,t · ∆t ∀s ∈ S, t ∈ T\{t = 0}, (12.4)

els,t = 0 ∀s ∈ S, t = 0, (12.5)

where ∆t is the time increment of the input time series. The initial energy
level is set to zero.

To allow only shifting within the defined time horizons h(s), the energy
level is fixed to zero at the beginning and end of each time interval equal to
the horizon:

els,t=n·h(s) = 0 ∀s ∈ S, n ∈ N. (12.6)

In this way, the amount of charged energy equals the discharged energy
within h(s) and no shifting exceeding h(s) is possible.

Further, the chosen time horizons have to be multiples of each other,
i.e.

h(s1) = m · h(s2) ∀s1, s2 ∈ S : h(s1) > h(s2), m ∈ N. (12.7)

This constraint is added to avoid unintended shifting between different
storage types. Consequently, when a storage unit has to be balanced at the
end of its time horizon, it can only shift to or draw from a storage unit with
a longer time horizon. The only exception to this rule is the storage unit
with the longest time horizon. If the time horizon of this specific storage
does not fulfil (12.7), it can be used to store excess generation or supply
excess demand if supply and demand are not perfectly balanced.

As the capacities of the storage units are not known beforehand, the model
allows negative values for the energy level, and the capacities of the storage
units caps can be calculated by:

caps = max(els,t)− min(els,t) ∀s ∈ S. (12.8)
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Finally, the sum of (dis-)charging of the different storage units has to meet
the grid residual load:

∑
s∈S

ps,t = p f ,t − pl,t − pHP
el,t − ∑

c∈C
pEV

c,t + ∑
c∈C

pV2G
c,t − pBS

ch,t+pBS
dis,t

∀t ∈ T,
(12.9)

where p f ,t is the feed-in power, pl,t the inflexible load, pHP
el,t the electrical

power consumption of HPs and pEV
c,t and pV2G

c,t the charging and discharging
powers of EVs, respectively, for charging use case c (introduced in the next
subsection). Variables pBS

ch,t and pBS
dis,t describe the charging and discharging

of all battery energy storage systems (BESS) in the system.

Decentralised Flexibility Options

Our goal is to measure the possible contribution of decentralised flexibility
options to reduce the temporal flexibility needs. We therefore include the
previously introduced model formulations of EVs, HPs and BESS. In the
use case of inflexible charging, the charging of EVs is treated as an inflexible
load. For flexible charging, we distinguish between different use cases, such
as home and work charging, and introduce an equivalent aggregate model
for each of these use cases using the formulation of flexibility envelopes
introduced in Section 3.2.6. HPs are modelled including a TES, which can
be used to shift the demand. All HPs in the system are modelled by a
single aggregate component accumulating the nominal capacities and TES
of individual HPs using the model formulation with lossy TES introduced
in Section 3.3.5. Similarly, all BESS in the system are represented by a single
aggregate model using the model formulation of lossy battery storage in
Section 3.4.3.

12.2 flexibility indicators

In order to compare the results of different scenarios, we define indicators
that quantify the flexibility needs. The first indicator is the shifted energy
for different time scales. We call this indicator shifted energy SE and calculate
it using:

SEs = ∑
t∈T

(pdis
s,t · ∆t) ∀s ∈ S, (12.10)
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where the energy discharged from each storage type pdis
s,t · ∆t is summed

over all time steps.

The second indicator is similar to the storage duration index SDI introduced
in [189]. Specifically, we define the mean storage duration SD for each storage
type, which indicates how long energy is stored on average in the storage
units:

SDs =
∑sh∈Shs(τsh · Esh)

∑sh∈Shs Esh
∀s ∈ S, (12.11)

where Shs are all shifting events for storage type s, τsh is the shifting time
and Esh the energy shifted for shifting event sh. The shifting events are
determined in an iterative approach using the charging time series of the
storage types, illustrated in Fig. 12.1.

Iterating through the time series, each time step with a charging power
larger than zero is paired with the previous or next discharging event
with a charging power lower than zero (and vice versa). The lower value
between charged and discharged energy determines the shifted energy
Esh, and the difference of charging and discharging time steps determines
the shifting time τsh. Suppose in the described example, the energy of the
charging event is higher than that of the discharging event (depicted on
the left). In that case, the original value of charging is reduced by Esh/∆t
and the discharging event is removed from the time series. Then, the same
procedure is followed with the remaining charged energy until it is fully
paired with discharging events. Suppose the discharged energy exceeds
the charged energy in the example (depicted on the right). In that case,
the discharging at the time step of the discharging event is reduced by
Esh/∆t, and the iteration process moves ahead to the next time step after
the charging event.

Since the obtained charging time series of the storage equivalents are not
deterministic, the shifting times are obtained for ten optimisation runs with
different solutions1 and the mean values are used to quantify the mean
storage duration SDs.

1 Different solutions are obtained by adding an additional constraint fixing the shifted energy
on the different timescales and adapting the weights in the objective function.
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Figure 12.1: Concept of determining shifting times, displayed for the first two
shifting events.
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C A S E S T U D I E S

The goal of this study is to investigate the flexibility needs of highly renew-
able energy systems and the influence of increasing penetrations of sector
coupling technologies. We therefore apply the proposed storage equivalent
model to a case study of a 100 % RE system in Germany and perform
several scenario variations. Section 13.1 explains the basic setup of the case
studies. Sections 13.2 and 13.3 include scenario variations for a varying
generation mix, as well as varying penetration and level of flexibility of
EVs, HPs and BESS. Section 13.4 combines both analyses. In Section 13.5,
sensitivities towards the most important model parameters and input data
are investigated.

13.1 study setup

The following sections describe the basic study setup. Section 13.1.1 ex-
plains how the balance of generation and load is ensured in all test cases.
Standard model parameters and inputs are introduced in Section 13.1.2.

13.1.1 Balancing of Generation and Load

We assume that the total load can be met by a combined feed-in of PV
and wind and scale the respective time series so that the energy provided
equals the annual demand of conventional load and sector coupling tech-
nologies:

∑
t∈T

p f ,t = ∑
t∈T

(
pl,t + pHP

el,t + ∑
c∈C

pEV
c,t − ∑

c∈C
pV2G

c,t + pBS
ch,t − pBS

dis,t

)
= E. (13.1)

If the flexibility of the sector coupling technologies is used, the total con-
sumed electricity E can change. On the one hand, this is because there is
additional electricity consumption through losses caused by the deploy-
ment of vehicle-to-grid (V2G) and TES. On the other hand, the utilisation of
TES can shift the heat demand, which, in combination with a time-varying
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E = Ere f

Scale feed-in time series
with E and run stor-

age equivalent model.

|E−Eopt|
E < θ E = Eopt

E, SE

Eopt

no

yes

Figure 13.1: Iterative process to solve the storage equivalent model accounting
for changes in electricity consumption by deployment of V2G and
TES.

coefficient of performance (COP), alters the electricity consumption for
heating. Since the total electricity consumption is thus dependent on the
outcome of the optimisation, we choose the iterative approach displayed in
Fig. 13.1 to determine storage equivalents.

The process starts with the electricity consumption in case of reference op-
eration E = Ere f , which is used for the first scaling of the feed-in time series.
Solving the storage equivalent model yields an updated total electricity con-
sumption Eopt. The process terminates if the relative deviation of Eopt and
the electricity consumption used for scaling E is smaller than a tolerance
value, set to θ = 1 %. If the tolerance value is exceeded, the scaling and
model run is repeated with the updated electricity consumption E = Eopt
until the tolerance value is reached. The according scaling of the feed-in
time series ensures that feed-in and consumption are balanced.

13.1.2 Base Case

This section describes the basic study setup and input used for the Base Case.
All mentioned values are also used in the following scenario variations if
not mentioned otherwise.
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Table 13.1: Default model parameters

Storage types (s) Time horizons (h(s)) Weightings (δs)

short 24 h = 1 d 1.001

medium 4w = 28 d (1.001)2

long 1a = 365 d (1.001)3

Model Parameters

The chosen model parameters are summarised in Table 13.1. We investigate
short-, medium- and long-term flexibility needs and define daily, four-
weekly and seasonal (365 days) storage as considered time horizons h(s).
These values are inspired by existing storage or load shifting time scales. As
an example, residential battery storage is mainly operated on a daily basis,
while EV driving predominantly follows a weekly pattern. In extreme cases,
EV charging demand could be shifted for longer than a week, so we choose
four weeks (i.e. approximately one month) for the medium-term storage.
Large-scale heat storage or synthetic gases such as hydrogen can operate as
seasonal storage, which we define as the long-term storage type.

For the weighting of the different storage types in the objective function,
we use values of δshort = 1.001, δmedium = (1.001)2 and δlong = (1.001)3.
The consequence is that shorter-term storage is chosen over longer-term
storage if it leads to an increase of less than 0.1 % in the overall shifted
energy.

Model Inputs

The Base Case describes a 100 % RE system in Germany with a total served
electrical load of 496.1 TWh1 and generation from solar and wind only. The
requirement that the VRES generation can fully cover the demand results
in installed capacities of 185.9 GW solar and 157.95 GW wind, keeping
the same proportion between solar and wind as for the current installed
capacities [192]2.

The weather highly influences the feed-in of PV and wind. To investigate
the general dynamics and average flexibility needs, we use data for a

1 Using time series for 2019 from ENTSO-E [20].
2 Using time series for 2019 from renewables.ninja [193], [194].
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Figure 13.2: Heatmaps of input time series on electricity demand for conventional
applications (upper left), solar (upper right) and wind (lower left)
feed-in with current installed capacities and residual load in the Base
Case (lower right) in GW.

representative medium weather year (see sensitivity analysis in 13.5.2),
resulting in a share of 41.5 % PV generation and 58.5 % wind generation
in terms of energy based on the above mentioned capacities. Fig. 13.2
shows the temporal characteristics of the input time series obtained from
ENTSO-E [20] and renewables.ninja [193], [194]. Displayed are conventional
demand (upper left), solar feed-in (upper right), wind feed-in (lower left)
and residual load in the Base Case (lower right) over the day of the year and
the hour of the day.

Both solar feed-in and demand show a strong daily and seasonal pattern.
Naturally, solar feed-in shows high values during the day, especially around
noon, and longer feed-in times in summer than in winter. The demand,
on the other hand, shows its highest values during morning hours (07:00 -
12:00) and in the evenings (17:00 - 19:00) and a lower overall demand in
summer than in winter. Wind feed-in shows less variation during single
days but more between different days. On the seasonal scale, wind feed-in
is higher in winter than in summer.
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Consequently, the residual load shows both daily and seasonal patterns.
On a daily scale, the highest positive residual loads, where load exceeds
renewable feed-in, occur in the morning and evening. The highest negative
residual load occurs around noon and in the night. A seasonal effect arises,
where in summer the hours of negative residual load around noon increase
and the hours of positive residual load shift to earlier morning and later
in the evenings. During winter, the opposite occurs, and more days show
strong wind feed-in.

In the Base Case, no sector coupling technologies, namely EVs and HPs,
are present. The parameters and time series of these are described in Sec-
tions 13.3.1 and 13.3.2, which include the scenario variations investigating
increasing penetrations of EVs and HPs.

All calculations are executed with an hourly resolution for 52 weeks (=
364 days). The period is chosen because it is a multiple of the short- and
medium-term storage time horizons. This condition is necessary to en-
sure that the storage units are balanced at the end of the simulation pe-
riod.
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13.2 case study i : generation mix

Flexibility needs are influenced by the feed-in pattern, which in turn de-
pends on the types of generation units and their share in the generation
mix. Therefore, we vary the generation mix in a first scenario variation. The
simulated scenarios are summarised in Table 13.2.

13.2.1 Scenario Variations

In Gen. Base, we compare the 100 % VRES feed-in (VRES) defined as the Base
Case with a continuous generation (Flat), where all generators have a con-
stant power output which, while not being very realistic, is assumed to be
the preferred operational strategy of large conventional power plants.

To investigate the influence of the renewable generation mix, we vary the
share of PV and wind in a second scenario Gen. VRES, where the share of
energy provided by PV is varied from 0 % to 100 % in steps of 5 %. The total
energy provided by the combined resources stays constant as defined in
(13.1).

Table 13.2: Scenarios for the variation of the generation mix

Scenario Profile Share PV

Gen. Base Flat Flat Gen. None
Gen. Base VRES 100 % VRES 41.5 %

Gen. VRES 100 % VRES { 0 %, 5 %, ..., 100 % }

13.2.2 Results

Here we present the results of the variation of the generation mix, providing
values for the key indicators of flexibility needs for short-, medium- and
long-term energy shifting. Figure 13.3 shows the energy shifted over the
different time horizons for the reference scenario Flat Gen. of continuous
generation and the Base Case of 100 % VRES (left) as well as for different
shares of PV and wind generation in a 100 % VRES scenario (right). The
Flat Gen. case requires shifting of 37.6 TWh, whereas the Base Case of 100 %
VRES leads to the need of 138.1 TWh of energy shifting. This accounts
for 7.6 % and 27.8 % of the total served load, respectively. There is an
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Figure 13.3: Flexibility needs for flat generation vs. the 100 % RES scenario (left)
and for a 100 % RES with varying shares of PV and wind generation
(right). The y-axes apply to both subplots.

increase of shifted energy for all three storage types. The short-term shifted
energy increases from 2.8 % to 11.0 %, the medium-term shifted energy from
2.4 % to 10.5 % and the long-term shifted energy from 2.4 % to 6.4 % of the
total served load in the Base Case of 100 % renewable energy sources (RES)
compared to the Flat Gen. case.

In case of the varying shares of PV and wind, a value of 0 % signifies that
the load is fully covered by wind generation and a value of 100 % that the
load is fully covered by PV generation. The shifted energy proves to be
highly dependent on the generation mix. The lowest total shifted energy of
127.0 TWh (25.6 % of the total served load) occurs at a share of 0.25, meaning
that 25 % of the energy is provided by PV and 75 % by wind generation.
The highest value of the total shifted energy with 284.5 TWh (57.3 % of the
total served load) occurs in the case of 100 % PV generation. This represents
more than double of the shifted energy compared to the optimal mix.

The influence of the generation mix on the three storage types differs. For all
storage types, there is a minimum at a specific mix of PV and wind, but the
specific mix differs depending on the storage type. The short-term energy
shifting has a minimum of 16.7 TWh shifted energy (3.4 % of the total load)
at a share of 10 % PV and increases with the share of PV up to 150.3 TWh
(30.3 % of the total demand). The medium-term energy shifting shows this
minimum at a mix of 95 % PV and 5 % wind generation with 12.0 TWh
shifted, equal to 2.4 % of the total demand. The maximum medium-term
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Figure 13.4: Storage durations for short- (left), medium- (middle) and long-term
(right) storage in the 100 % RES scenario with varying share of PV
and wind generation.

energy shifting occurs at 75 % wind generation with 68.5 TWh or 13.8 % of
the total demand shifted by medium-term storage, staying nearly constant
at this value for a further increase in the share of wind generation. The
long-term energy shifting is lowest for 35 % PV and 65 % wind generation
with 27.8 TWh or 5.6 % of the total demand shifted long-term. The highest
amount of energy shifted by the long-term storage occurs at 100 % PV
generation with 24.6 % of the total demand.

Fig. 13.4 displays the storage durations for short- (left), medium- (middle)
and long-term (right) storage SDs with a varying share of PV and wind
feed-in in the 100 % VRES scenario for varying levels of PV share. The
storage duration of the short-term storage shows its maximum for 5 % PV
with 11.8 hours and decreases with increasing shares of PV to 7.0 hours
at 65 % PV. With a further increase of the PV penetration to 100 %, the
storage duration shows relatively stable values without further decrease.
The medium-term storage duration decreases from 8.8 days for 0 % PV to
8.2 days for 40 % PV generation, to then increase with higher PV genera-
tion up to 11.3 days for 100 % PV. The long-term storage duration ranges
from 90 days to 119 days, with its minimum at 10 % PV generation and an
increasing trend for higher shares of PV. After reaching its maximum at
75 % PV generation, the long-term storage duration slightly decreases with
higher shares of PV to 114 days for 100 % PV. The results imply that higher
shares of PV decrease the short-term storage durations, but increase the
medium- and long-term storage durations.
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13.3 case study ii : decentralised flexibility options

Next, we investigate the influence of increasing shares of DFOs on the
temporal flexibility needs. We thereby compare the uncoordinated operation
with different levels of flexibility provision from EVs in Section 13.3.1 and
HPs in Section 13.3.2.

13.3.1 Electric Vehicles

EVs, on the one hand, are likely to increase the flexibility needs due to the
increasing system load. On the other hand, they can offer flexibility to the
system. We therefore want to investigate the influence of the integration of
EVs on the flexibility needs by varying the EV penetration and their level
of flexibility in a second scenario variation.

Scenario Variations

To investigate the influence of increasing shares of EVs, we increase the
EV penetration from 0 % to 100 % in steps of 10 %. The case of 100 % EV
penetration translates to a total of 48.8 Mio. EVs, which is the current
number of private cars in Germany [112]. We model different charging use
cases: slow charging, divided into home, work and public charging, and
fast charging at high power charging stations. The charging time series and
flexibility bands associated with these use cases are based on the previous
investigations in Part I of this thesis. There, we modelled a total of 26 880

EVs, divided into 16 597 battery electric vehicles (BEVs) and 10 283 plug-in
hybrid electric vehicles (PHEVs), with a charging efficiency of ηEV = 0.9
in six different distribution grids to cover various different driving profiles
and charging infrastructure setups. The adopted time series for reference
charging corresponds to a charging behaviour where the EVs charge at
full power directly after plug-in until the charging demand of the charging
session is met (see Section 3.2).

In this case study, we only consider BEVs since we assume that PHEVs
will not play a significant role in a 100 % renewable energy system [144].
Assuming that the number of nrEV,re f = 16 597 BEV profiles is sufficiently
high to account for statistical deviations, we sum the charging demands
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of the different use cases and scale the obtained time series for reference
charging pEV,re f

c,t with the simulated number of BEVs nrEV :

pEV
c,t = pEV,re f

c,t · nrEV
nrEV,re f

∀c ∈ C, t ∈ T. (13.2)

The same scaling is done for the flexibility bands of flexible charging.

We further model the four flexibility scenarios for EVs with increasing
levels of flexibility, as summarised in Tab. 3.10. For the lower levels of
flexibility, shifting of charging demand within the originally scheduled
session is allowed. In EVs Flex, only charging at home and work charging
station is assumed to be flexible. In EVs Flex+, shifting is additionally
allowed at public charging stations. For EVs Flex++ and EVs V2G, shifting
between standing times is possible for all three charging use cases, as
long as charging infrastructure is available. EVs V2G furthermore allows
to discharge the EVs, which is not possible in the other levels of flexibility.
Further details on the underlying assumptions and their effects on the
flexibility envelopes are detailed in Sections 3.2.4 and 3.2.6 for each level of
flexibility.

Results

In the following, we present the temporal flexibility needs with increas-
ing shares of EVs. Figure 13.5 shows the shifted energy on the different
time scales for the reference operation of EVs (left) and with maximum
flexibility through V2G (right). With an increasing share of EVs integrated
into the system, there is an increase in shifted energy in case of reference
operation. For 100 % EV penetration, this increase amounts to 29.0 TWh or
21.0 % of overall shifted energy in the Base Case. The additional electricity
consumption, in this case, equals 120.4 TWh, which is 24.2 % of the original
load.

For the EVs V2G scenario, the flexibility utilisation from EVs leads to a
decrease in flexibility needs with increasing shares of EVs. Particularly
the short-term energy shifting is almost entirely provided by EV flexibility
with high penetrations of EVs. The medium-term energy shifting decreases
by roughly half, while the long-term energy shifting shows no significant
change. For 100 % EV penetration, a reduction of 86.2 TWh or 62.4 % of
the total shifted energy in the Base Case can be achieved. The electricity
consumption caused by additional losses with V2G amounts to 14.0 TWh,
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Figure 13.5: Flexibility needs for increasing penetrations of EVs with reference
operation (left) and maximum flexibility (right) for the Base Case
generation.

equal to 2.8 % of the original load. With increasing penetrations of EVs,
the additional consumption by V2G losses shows a saturation effect (not
displayed), i.e. does not significantly increase any further.

Figure 13.6 shows the change in shifted energy with increasing penetration
of EVs with reference operation (top) and flexible charging with different
levels of flexibility (bottom) compared to the Base Case. All values are
displayed in percent of the total shifted energy in the Base Case without EVs.
The results show that the additional energy shifting with reference operation
consists of mainly short- and medium-term energy shifting.

The change in additional flexibility needs differs for the investigated levels
of EV flexibility. In the scenarios EVs Flex and EVs Flex+, we mainly observe
a reduction in short-term flexibility needs. The net reduction of short-
term energy shifting amounts to 3.8 % and 9.5 % for the integration of
the 48.8 Mio. EVs (100 % penetration), respectively for the two scenarios.
The increase of medium-term shifting can be reduced from 10.6 % with
reference operation to 8.9 % and 7.4 % for 100 % EV penetration. The long-
term shifting shows a slight increase of 2.3 % at 100 % EV penetration in all
three cases. Overall, the increase in total flexibility needs can be reduced
from 21.0 % with reference operation to 7.3 % in the EVs Flex and 0.1 % in
the EVs Flex+ scenario in case of a 100 % EV penetration.

In the scenarios EVs Flex++ and EVs V2G, there is a net reduction of flexi-
bility needs with increasing penetrations of EVs. The total shifted energy
can be decreased by 18.9 % and 62.4 % in the EVs Flex++ and EVs V2G
scenarios with 100 % EV penetration compared to the Base Case. For EVs
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Figure 13.6: Change in energy shifting through the integration of EVs with
reference operation (top) and flexible charging at different levels
of flexibility compared to the Base Case. All values are displayed in
percent of the overall shifted energy in the Base Case without EVs.
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Figure 13.7: Storage durations for short- (left), medium- (middle) and long-term
(right) storage with increasing shares of EVs in the simulated sce-
narios. The shaded areas indicate the standard deviation between
the ten runs.

Flex++, the reduction is mainly in medium-term energy shifting, as the
short- and long-term shifting stay nearly constant. For EVs V2G, both short-
and medium-term energy shifting is significantly reduced. Long-term shift-
ing again remains unchanged. While for all other flexibility scenarios, the
change in flexibility needs follows a linear trend, the EVs V2G scenario
shows a saturation with decreasing marginal reduction at higher EV pene-
trations.

Figure 13.7 displays the storage durations for the different storage types
under increasing shares of EVs with reference operation and in the different
flexible scenarios. The results show that in the EVs Ref. scenario, the storage
durations stay relatively constant for short- and medium-term shifting
and decrease for long-term shifting with increasing penetrations of EVs.
Using EV flexibility to decrease a certain type of energy shifting generally
increases the storage durations with increasing shares of EVs, notably in
particular for short- and medium-term shifting in the EVs V2G scenario.
This implies that the flexibility is mainly used to replace shorter shifting
events for the respective storage type.

Figure 13.8 summarises the reduction potential of flexible EV charging
compared to reference charging for different penetrations of EVs and levels
of flexibility. We thereby examine the reduction of total shifted energy
(left) and the reduction in shifted energy for individual storage types (right)
relative to the flexibility needs in case of reference charging. The reduction of
total shifted energy shows that the deployment of V2G shows the strongest
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Figure 13.8: Overall reduction of total shifted energy (left) and reduction of
individual storage types (right) for different levels of EV flexibility
and different penetrations of EVs. A reduction of 100 % thereby
means that the flexibility needs in case of reference charging (EVs
Ref.) can be fully met using EV flexibility.

increase in reduction of all flexibility measures (indicated by the gradient).
Furthermore, the marginal reduction with increasing penetrations of EVs
in general decreases for high penetrations. This effect is also visible in the
reduction of shifted energy for individual storage types.

The reduction of shifted energy in individual storage types is different
for short-, medium and long-term storage. A reduction of 100 % thereby
means that the required energy shifting in case of reference operation of
EVs is fully covered by EV flexibility. This is for example almost reached
for the reduction of short-term storage in the flexibility scenario V2G with
EV penetrations of 20 % or more. It has to be mentioned that the energy
shifted short-term only amounts to 39.3-39.4 % of the total shifted energy,
and slightly decreases with the EV penetration. A 100 % reduction in short-
term energy shifting therefore means a reduction of 39.3-39.4 % of the total
shifted energy. The share of medium- and long-term energy shifting amount
to 37.6-39.8 % and 20.9-23.0 % for the different scenarios, the medium-term
share slightly increasing and the long-term share slightly decreasing with
increasing EV penetrations.

Overall, the reduction in short-term energy shifting is highest for all levels
of flexibility except for EVs Flex++. There, the flexibility is mainly used to
reduce medium-term shifting. For medium- and long-term shifting, the
reduction is low for Flex and Flex+, but increases with Flex++ and V2G. The
highest reduction values are obtained with 100 % EV penetration with the
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highest level of flexibility, being 98.1 % for short-term, 69.7 % for medium-
term and 12.8 % for long-term energy shifting.
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13.3.2 Heat Pumps

Similar to EVs, the integration of HPs increases the electricity demand but
in combination with TES also offers the possibility to provide flexibility. In
a third scenario variation, we therefore vary the penetration and level of
flexibility of residential HPs.

Scenario Variations

In Germany, 19.4 Mio. residential buildings existed in 2021 [145]. For these,
we analyse different heating scenarios, increasing the HP penetration from
0 % to 100 % in steps of 10 %. A penetration of 100 % means that every
residential building is equipped with a HP. For the sizing of HPs and
TES, we use mean values of 13.0 kW installed thermal capacities for the
HPs and 21.5 MWh annual heat demand and we assume that we need
18.3 kWh of thermal storage to cover the heat demand for two consecutive
hours [175]. The static and dynamic efficiencies are set to ηTES

stat = 0.99 and
ηTES

dyn = 0.95 [195]. All average values for single HPs are scaled with the
simulated number of HPs in the respective scenario variation. The time
series for heat demand and COP for selected HP technologies are obtained
from When2Heat [127].

Following a similar approach as introduced in [195], the overall COP time
series is calculated as a weighted sum of the individual time series of
air-source and ground-source HPs with floor and radiator heating:

COPt = ∑
src∈
{air,

ground}

∑
snk ∈

{ f loor,
radiator}

(
Wsrc · Wsk · COPsrc, snk

t

)
∀t ∈ T. (13.3)

The weights are set to Wair = 0.71, Wground = 0.29, W f loor = 0.60 and
Wradiator = 0.40 [195].

The normalised heat demand time series from When2Heat is scaled with
the mean annual demand and multiplied by the number of HPs. Fig. 13.9
shows the resulting electricity demand for the 19.4 Mio. HPs in the case of
reference operation (left) as well as the COP (right). Reference operation
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Figure 13.9: Heatmaps of HP reference operation (left) and mean COP (right) for
19.4 Mio. HPs.

assumes a direct supply of the requested heat demand by the HP without
the usage of storage:

pHP,re f
el,t =

PD
th,t

COPt
∀t ∈ T. (13.4)

Furthermore, the level of flexibility is varied by adding differently sized
TES according to Table 3.13. In HPs Flex, the TES is sized such that it can
bridge the two hours of maximum thermal demand (see Section 3.3.4). In
HPs Flex+ and HPs Flex++, the size of TES is doubled and quadrupled,
respectively.

Results

In the following, we present the results for increasing penetrations of
HPs at different levels of flexibility along the defined flexibility indicators.
Figure 13.10 displays the shifted energy for increasing penetrations of heat
pumps with reference operation (left) and maximum flexibility in the HPs
Flex++ scenario (right). Growing numbers of HPs cause a relatively linear
increase in flexibility needs in both cases. In case of reference operation,
with 100 % HP penetration, the total shifted energy increases by 41.4 TWh
or 30.0 % compared to the Base Case without HPs, i.e. corresponding to
the values at 0 % in the figure. This amount can be reduced to 13.9 TWh
or 10.1 % with the highest level of flexibility. The additional electricity
consumption for this number of integrated HPs amounts to 115.8 TWh,
which is 23.3 % of the original load. In the HPs Flex++ scenario, losses from
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Figure 13.10: Flexibility needs for increasing penetrations of HPs with reference
operation (left) and maximum flexibility (right) for the Base Case
generation.

the TES cause an additional load of 7.3 TWh, which is 1.5 % of the original
load.

Figure 13.11 displays the change in shifted energy when integrating HPs
with reference operation (upper left) and flexible operation using TES of
different sizes enabling a minimum of two (Flex: upper right), four (Flex+:
lower left) and eight hours (Flex++: lower right) of shifting of the thermal
load. All values are displayed compared to the Base Case without HPs
and in percent of total shifted energy in this case. The increase in shifted
energy shows a strong increase in long-term shifting with increasing HP
penetration and a smaller increase in short-term shifting for the reference
operation. For 100 % HP penetration, the increase of short-term energy
shifting amounts to 5.2 % and the long-term to 24.8 %. The medium-term
energy shifting stays nearly constant.

For all levels of flexibility, the highest reduction can be seen in short-term
energy shifting. The reduction is higher than the original increase with
reference operation in all cases such that a net reduction of short-term
energy shifting is achieved with increasing numbers of HPs. At the same
time, there is almost no reduction in long-term energy shifting for all the
flexibility scenarios. The reduction of medium-term energy shifting, on
the other hand, increases with increasing level of flexibility. However, the
total shifted energy still increases with increasing numbers of HPs since the
potential to decrease long-term energy shifting is limited, and the decrease
in short- or medium-term energy shifting does not outweigh the increase
in long-term energy shifting.
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Figure 13.11: Change in shifted energy through the integration of HPs with ref-
erence operation (upper left) and with flexible charging at different
levels of flexibility compared to the Base Case. All values are dis-
played in percent of overall shifted energy in the Base Case without
HPs.

Overall, in case of 100 % HP penetration, the increase in the total shifted
energy can be reduced from 30.0 % with reference operation to 17.5 % in
the Flex, 13.4 % in the Flex+ and 10.1 % in the Flex++ scenario.

Fig. 13.12 shows the storage durations of short-, medium- and long-term
storage for increasing penetrations of HPs in the simulated scenarios. The
short-term storage duration stays nearly constant for increasing HP pene-
trations with reference operation. Using flexibility increases the short-term
storage durations with rising HP penetrations for all three flexible sce-
narios. This implies that mainly short shifts are covered by HP flexibility.
For the medium-term energy shifting, no clear trend can be identified for
the storage durations. The long-term strorage durations first decrease for
increasing HP penetrations. However, for penetrations higher than 60 %, the
storage durations start to increase again with increasing HP penetrations,
with larger slopes for higher levels of flexibility.

Fig. 13.13 summarises the overall reduction of total shifted energy (left) and
the reduction of the shifted energy by storage types (right) for different
levels of HP penetration and flexibility compared to the reference operation.
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Figure 13.12: Storage durations for short- (left), medium- (middle) and long-term
(right) storage with increasing shares of HPs in the simulated sce-
narios. The shaded areas indicate the standard deviation between
the ten runs.

The reduction of total shifted energy shows a maximum of 15.3 % compared
to flexibility needs with reference operation. Similar to EVs, the marginal
reduction potential decreases with increasing numbers of HPs. Another
effect is that the efficacy of additional TES capacity to reduce the total
and short-term flexibility needs decreases with a growing size of TES. For
short-term energy shifting, there is thus a saturation effect for increasing
sizes of the TES indicated by the small differences between the different
flexibility cases.

The reduction in shifted energy of individual storage types is highest
for short-term shifting, followed by medium- and long-term shifting. The
highest values are obtained for 100 % HP penetration in the Flex++ scenario
with the reduction amounting to 30.1 % for short-term, 14.4 % for medium-
term and 2.2 % for long-term flexibility needs. The shares of short- and
medium-term energy shifting with respect to total shifted energy amount
to 34.3 - 39.4 % and 28.9 - 37.6 %, both showing a decreasing trend with
an increasing HP penetration. The distribution of the flexibility needs
across the different time scales is shifted to higher percentages of long-
term storage needs with increasing HP penetration, taking values between
23.0 - 36.8 %.

13.3.3 Battery Storage

Battery storage is increasingly installed together with residential PV [18].
Unlike EVs and HPs, BESS do not significantly increase the electricity
consumption (only through losses), but flexibility provision is their primary
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Figure 13.13: Reduction of total shifted energy (left) and of individual storage
types (right) for different levels of HP flexibility and different
numbers of HPs. A reduction of 100 % thereby means that the
flexibility needs in case of reference charging (HPs Ref.) can be fully
met using HP flexibility.

goal. We therefore investigate the effects of residential BESS with reference
operation, i.e. maximising PV self consumption, and an optimised operation
on the system temporal flexibility needs.

Scenario Variations

Similar to the integration of HPs, we assume that every residential building
owns a BESS in the case of 100 % BESS penetration. The penetration is
increased from 0 % to 100 % in steps of 10 %, until every of the 19.4 Mio.
residential buildings is equipped with a battery storage. The BESS are sized
according to Section 3.4.1, resulting in a mean power capacity of 5.2 kW
and a mean energy capacity of 8.7 kWh. The charging and discharging
efficiencies are set to ηBS,ch

bs = 0.93 and ηBS,dis
bs = 0.94 [156].

The reference operation assumes a charging at excess generation until the
storage energy capacity is reached and a discharging at excess demand until
the storage is empty (see Section 3.4.2). The reference time series is scaled
with the number of BESS for the reference operation. For the optimised
operation, the model formulation of a lossy battery storage introduced
in Section 3.4.3 is used. Therefore, the mean values for power and energy
capacities are scaled with the number of simulated BESS in the respective
scenario variation.
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Figure 13.14: Storage equivalents for increasing penetrations of BESS with refer-
ence (left) and optimised operation (right) for the Base Case genera-
tion.

Results

The following section summarises the results for the integration of BESS
with reference and optimised operation along the defined flexibility indica-
tors. Figure 13.14 displays the shifted energy, divided into short-, medium-
and long-term shifts, for the reference operation of BESS (left) and an opti-
mised operation (right). In both cases, the shifted energy is reduced with
increasing shares of BESS. With the reference operation, the total shifted
energy is reduced by 17.1 TWh, which is 12.3 % of the shifted energy in the
Base Case. This reduction can be increased to 38.1 TWh by the optimised
operation, i.e. 27.6 % of the total shifted energy in the Base Case.

Figure 13.15 displays the change in shifted energy caused by the integration
of BESS with reference (left) and optimised operation (right). The values
are displayed in percent of total shifted energy in the Base Case. The re-
sults show that with the reference operation, only the short-term energy
shifting is reduced. When optimised to reduce the necessary energy shift-
ing, additionally to an increased reduction of short-term energy shifting,
the energy shifted medium-term can also be reduced to a smaller extent.
The short-term shifting can be reduced by 22.7 % and the medium-term
shifting by 4.8 % of total shifted energy in the Base Case for 100 % BESS
penetration.

In Fig. 13.16, the mean storage durations for the different storage type
and the integration of BESS with reference and optimised operation are
displayed. The storage duration for short-term energy shifting increases for
increasing BESS penetration in both cases. The increase is thereby stronger
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Figure 13.15: Change in shifted energy through the integration of BESS with
reference (left) and optimised operation (right) compared to the
Base Case. The values are displayed in percent of total shifted energy
in the Base Case without BESS.
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Figure 13.16: Storage durations for short- (left), medium- (middle) and long-term
(right) storage with increasing shares of BESS in the simulated sce-
narios. The shaded areas indicate the standard deviation between
the ten runs.

for the flexible operation ranging from 7.4 hours to 9.3 hours than the
reference operation rising from 7.3 hours to 8.0 hours. The medium-term
storage duration in case of reference operation stays nearly constant around
8.0 days while it increases for the flexible operation with increasing shares
of BESS from 8.1 to 10.0 days. The long-term storage duration shows now
clear trend for increasing shares of BESS and ranges between 107 and 108

days. For the optimised operation of BESS, the storage durations decrease
with increasing shares of BESS.

The relative reduction of total shifted energy (left) and for individual storage
types (right) is displayed in Fig. 13.17. Since BESS do not consume energy
except for charging and discharging losses, the results are displayed in
percent of total shifted energy in the Base Case. The reduction of total shifted
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Figure 13.17: Storage durations for short- (left), medium- (middle) and long-term
(right) storage with increasing shares of BESS in the simulated
scenarios.

energy can be more than doubled with the optimised operation compared
to the reference operation. The marginal reduction thereby decreases with
increasing BESS penetrations. This effect also occurs for the reduction of
individual storage types. At 100 % BESS penetration, the short-term energy
shifting can be decreased by 57.5 % and the medium-term shifting by 12.1 %
with the optimised BESS operation. The reference operation reduces the
short-term energy shifting by 31.2 %, largely leaving the energy shifted
medium- and long-term unchanged.

13.4 case study iii : combined analysis

The uptake of DFOs influences the optimal generation mix. In a combined
analysis, we therefore investigate the interplay of DFOs and generation
mix.

Scenario Variations

We vary the generation mix from 0 % PV to 100 % PV in steps of five
percent for 100 % penetration of EVs, HPs and BESS. After investigating the
influence of individual DFOs, we also look at the combination of all in case
of reference operation (Combined Ref.) and for maximum levels of flexibility
(Combined Max. Flex), i.e. EVs V2G, HPs Flex++ and BESS Flex.

Results

In the following, we present the results of the combined analysis with
regards to the shifted energy on different time scales. Figure 13.18 shows
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Figure 13.18: Flexibility needs for varying shares of PV and wind generation with
100 % EVs (left), HPs (middle) and BESS (right) under reference
operation.

the temporal flexibility needs for 100 % EV (left), HP (middle) and BESS
(right) penetrations under reference operation. The DFOs change the abso-
lute amount of shifted energy and the division into short-, medium- and
long-term shifting. Furthermore, the optimal mix is altered in case of HPs
and BESS. While the total shifted energy shows its minimum at 25 % PV
generation with only conventional load (Gen. VRES) and for the integration
of EVs, it shifts to 20 % with the integration of HPs and to 35 % PV genera-
tion for the integration of BESS. Furthermore, the minimum of long-term
flexibility needs shifts to 20 % PV generation, while it stays unchanged at
35 % PV generation for the integration of EVs and BESS.

Figure 13.19 displays the change in shifted energy caused by the integration
of the respective DFO, i.e. in comparison to the shifting needs with only
conventional load in Gen. VRES. It shows that EVs lead to an increase
in shifted energy on all time scales for all generation mixes. The total
increase is lowest with 28.6 TWh for a mix of 35 % PV and 65 % wind
generation. The smallest increase in short-term shifting occurs at 15 % PV,
for medium-term shifting at 95 % PV and for long-term shifting at 40 %
PV. For HPs, the minimum increase is caused for a mix of 10 % PV and
90 % wind generation, amounting to 33.3 TWh. The smallest increase in
short-term shifting is caused at 5 % PV. For medium- and long-term energy
shifting, there is even a small reduction at certain generation mixes. The
largest reduction of medium-term shifting of 5.0 TWh occurs at 80 % PV and
of long-term shifting of 5.6 TWh at 5 % PV. BESS only show a significant
influence on short-term storage, increasing it by a maximum of 8.2 TWh for
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Figure 13.19: Change in shifted energy compared to Gen. VRES for varying shares
of PV and wind generation with 100 % EVs (left), HPs (middle) and
BESS (right) under reference operation.

100 % wind generation and decreasing it by a maximum of 28.7 TWh for
100 % PV generation.

The results of a combined integration of EVs, HPs and BESS are presented
in Fig. 13.20. We thereby compare the integration under reference operation
(left) and when using the flexibility of the DFOs in an optimised operation
(right). For the reference operation, the lowest total shifted of 182.3 TWh
energy occurs at 30 % PV and 70 % wind generation. The optimal mix
with the combined integration of EVs, HPs and BESS thus increases the
necessary shifting by 43.6 % compared to the optimal mix in Gen. VRES.
The minimum short-term shifting in the combined integration of DFOs
with reference operation occurs at 15 % PV, the medium-term at 100 % PV
and the long-term at 25 % PV. When the DFOs are optimised to minimise
the required energy shifting, the minimum total energy shifting amounts to
82.2 TWh and occurs at a generation mix of 40 % PV and 60 % wind. This
signifies a reduction of 35.3 % compared to the optimal mix in Gen. VRES.
For all generation mixes, the short-term shifting is reduced to nearly zero
by DFO flexibility. The medium-term energy shifting shows the same effect
for high shares of PV larger than 65 %. The long-term shifting shows its
minimum at a mix of 25 % PV and 75 % wind.

The change in shifted energy compared to Gen. VRES caused by the com-
bined integration of EVs, HPs and BESS is displayed in Fig. 13.21. The
change with reference operation is shown on the left and the change with
optimised operation on the right. The minimum increase in total shifted
energy with reference operation occurs with 51.3 TWh at a generation mix
of 40 % PV and 60 % wind. The short-term shifting stays nearly constant



13.4 case study iii : combined analysis 239

0 25 50 75 100

Share PV [%]

0

100

200

300

400

Sh
if

te
d

En
er

gy
[T

W
h] Combined Ref.

0 25 50 75 100

Share PV [%]

Combined Max. Flex

Short
Medium
Long

Figure 13.20: Flexibility needs for varying shares of PV and wind generation
with the combination of 100 % EVs, HPs and BESS under reference
(left) and optimised (right) operation.
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Figure 13.21: Change in shifted energy compared to Gen. VRES for varying
shares of PV and wind generation with the combination of 100 %
EVs, HPs and BESS under reference (left) and optimised (right)
operation.

with a balanced mix of PV and wind generation but shows an increase for
high shares of one or the other. The medium-term shifting is even slightly
reduced for high shares of PV generation. It increases with higher wind
generation. The long-term shifting is least increased at a mix of 15 % PV.
For the optimised operation of DFOs, we see a net decrease in energy shift-
ing for all generation mixes. The highest decrease of total energy shifting
occurs at 100 % PV. However, it comes with a high increase in long-term
shifting, which is compensated by an even higher decrease in short-term
shifting. The reduction in short-term shifting shows its maximum for 100 %
PV generation. The medium-term shifting is also decreased over all gen-
eration mixes, showing its maximum decrease at 40 % PV. The increase
in long-term shifting is close to zero at 20 % PV and increases with high
shares of PV.
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13.5 sensitivities

Modelling results depend on underlying assumptions, model parameters
and input data. We therefore run sensitivity analyses to investigate and
showcase the sensitivity of the displayed results towards the most important
model parameters and input data, namely the weighting of the storage
types in the objective function and the input time series for feed-in and
demand.

The flexibility needs on different time scales depend on the weighting of
the storage types relative to each other. In a first sensitivity analysis, we
therefore vary the weighting of storage types in the objective function to
identify ranges of appropriate values for these weightings.

Furthermore, it was shown that the weather year greatly influences overall
flexibility needs [190], [196]. In a second analysis, we therefore investigate
the influence of demand and generation time series of different years to
estimate the sensitivity of the resulting flexibility needs towards the weather
year.

13.5.1 Weighting of Storage Types

To investigate the influence of the relative weights, we vary the weights
of the different storage types in the objective function. Values of relative
weights δrel are defined as:

δrel = δrel∗ + ϵ =
δlong

δmedium
=

δmedium
δshort

(13.5)

and varied in a sensitivity analysis with values of δrel∗ = {10−1, 1, 101, 102}
and ϵ = 1e − 3. The small value of ϵ is added to avoid that all values are
exactly equal for δrel∗ = 1. The weights are chosen as δshort = δrel , and
consequently δmedium = (δrel)2 and δlong = (δrel)3.

The influence of the relative weights on the shifted energy may differ
with and without flexibility from EVs and HPs. We therefore investigate
the Base Case and the scenarios of maximum flexibility (EVs V2G and HPs
Flex++) with 100 % EV and 100 % HP penetration, respectively. The scenarios
of maximum flexibility are chosen as they show the strongest effects of
different relative weights on the shifted energy.
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Figure 13.22: Flexibility needs for different relative weights in the base case (left)
with 100 % flexible EVs (middle) and 100 % flexible HPs (right).

Figure 13.22 shows the resulting shifted energy for varying relative weights
in the Base Case (left), with 100 % flexible EVs (middle) and with 100 %
flexible HPs (right). The results show that the shares of the different storage
types and the overall shifted energy vary with different relative weights. In
all investigated cases, long-term storage covers the whole shifting for a value
of δrel∗ = 10−1 as it is the "cheapest" and offers the highest flexibility.

In the Base Case without flexibility, the total amount of shifted energy is only
dependent on the mismatch of supply and demand and therefore is the
same for all investigated relative weights. For values of δrel∗ ≥ 1.0, the short-
and medium-term storage are used additionally to the long-term storage,
and there is no further change for increasing relative weights.

When flexible units are included, both the distribution of the shifted energy
across the three storage types and the total shifted energy change with
different relative weights. For both EVs and HPs, the total shifted energy
increases with relative weights of δrel∗ > 1.0. In these cases, the long-term
energy shifting slightly decreases while the medium-term storage shifting
shows a slight and the short-term energy shifting a significant increase. For
large relative weights, both the shares of storage types and the total shifted
energy stay constant.

The reason for the increase in the overall shifted energy with higher relative
weights is that higher amounts of short-term energy shifts are traded for a
decrease of longer energy shifts, as these are more expensive in the objective
function. In this case, flexibility is used to decrease long-term or medium-
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term energy shifting, even though it could have been utilised to reduce
short-term shifting to a larger extent.

In the case of EVs, a high relative weight leads to limited utilisation of
V2G as this causes additional losses, which partially have to be stored
long-term. For significantly higher weights on long-term compared to short-
term shifting needs, this additional long-term shifting is not accepted even
though it would result in a significant decrease in short-term shifting. For
the same reason, the utilisation of TES is limited for HPs for high relative
weights. Furthermore, the usage of the flexibility and the resulting needs for
energy shifting in the HP scenario are impacted by the time-varying COP.
For high relative weights, the optimisation schedules demand of HPs that
originally coincided with renewable energy supply into times with high
COP, thus reducing the overall electricity demand and seasonal shifting but
requiring more shifting within the day. The higher the relative weights, the
more additional short-term shifting is accepted for decreasing long-term
flexibility needs.

In summary, the sensitivity analysis shows that both the total flexibility
needs as well as the shares of the different storage types highly depend
on the relative weighting. The results furthermore indicate that the choice
of a relative weight of δrel = 1.001 is a reasonable trade-off, leading to a
sensible utilisation of the short- and medium-term storage types without
increasing the overall shifted energy as there is no strong preference to
reduce long-term shifting.

13.5.2 Input Time Series

To investigate the influence of different load and feed-in patterns, we run a
sensitivity analysis with different years as inputs and compare them to the
simulated Base Case. For the conventional load profiles, we use the annual
electricity demand for the years 2015 -2022 provided by ENTSO-E [20].The
renewable feed-in is taken from renewables.ninja, which provides nationwide
data for the years 1980 - 2019 [193], [194].

Figure 13.23 shows the data for the years 2015 - 2019 for demand (top) and
VRES feed-in (bottom). The feed-in time series are scaled such that the
total generated energy is the same as the load in the Base Case. They show
different peaks, which are highly dependent on the weather conditions, but
similar general characteristics. The demand displays a similar pattern in all
investigated years.
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Figure 13.23: Load (top) and feed-in (bottom) time series for the years 2015-2019.
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Figure 13.24: Flexibility needs with varying generation and demand time series.

Figure 13.24 shows the shifted energy for different simulated years for the
variation of the generation time series (left) and the variation of the demand
time series (right). For the variation of generation time series, the overall
shifted energy varies between 96.2 % and 108.6 % of the total shifted energy
in the reference case (2019). The shares of the different storage types in the
reference case is 39.4 % of energy shifted by the short-term, 37.6 % shifted
by the medium-term and 23.0 % shifted by the long-term storage unit. For
the other years, the share of energy shifted by the short-term storage varies
between 34.4 % and 44.6 %, the share of energy shifted by the medium-
term storage between 28.4 % and 49.4 % and the share shifted by long-term
storage between 12.0 % and 32.2 %.
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Two factors lead to differences in flexibility needs for the investigated years.
The first is that the share of PV and wind generation varies between the
years. In the investigated data set, the share of PV varies between 37.3 %
and 46.8 %. This share influences the total shifted energy and the shares of
the different storage types as the scenario with a varying generation mix
shows. However, the years deviating most from the mean of all years (e.g.
1997 and 1999) have generation mixes similar to the mean value of all years
(1997: 43.0 %, 1999: 40.7 %, mean: 41.2 % PV). They should thus not deviate
significantly from the mean distribution if this was the main factor for these
differences which is not the case. Therefore, the second influencing factor,
the time series patterns, seems to have a stronger influence on the outcome
than the generation mix.

The differences in shifted energy and shares of the different storage types
are smaller for the variation of the demand (Fig. 13.24, right) than for the
variation of feed-in (Fig. 13.24, left). However, a smaller sample size was
used for the demand time series. Nevertheless, the demand also shows
less deviations between the years in Fig. 13.23 than the feed-in time series.
The total amount of shifted energy ranges from 96.9 % to 102.4 % of the
total shifted energy in the reference case. The share of short-term shifted
energy ranges between 38.1 % and 39.4 %, where the reference case is at
the upper limit. The share of energy shifted medium-term ranges between
35.7 % and 39.4 %, where the reference case is close to the mean with 37.6 %.
The long-term storage ranges between 21.8 % and 26.3 % and the reference
case is at 23.0 %. Therefore, overall, the results are relatively stable for the
variation of the demand time series.

In summary, the sensitivity analysis with input data from different weather
years shows some influence on the total shifted energy and shares of the
different storage types by both the variation of feed-in and demand time
series. However, the sensitivity analyses also show that while there are
dependencies on the weather year, the results are still relatively robust,
and the chosen weather year (2019) represents the other years reasonably
well. A certain influence of the weather year is expected as previously
mentioned [190], [196].

It should be noted that the starting time of the simulation also impacts
the results. Varying the starting time for the Base Case within the day (i.e.
shifting by zero to 23 hours) impacts the shares of short-, medium- and
long-term storage. The shares range between 39.3 - 41.1 %, 35.7 - 37.6 % and
23.0 - 23.4 %, respectively. Furthermore, the storage durations differ, with



13.5 sensitivities 245

the largest difference in short-term storage durations (7.8 - 12.9 hours). A
variation of the starting time within a month (i.e. shifting by zero to 28 days)
does not affect the short-term shifting, but the shares of medium- and long-
term shifting within the total shifted energy. They vary from 34.7 - 40.8 %
for medium-term and from 19.8 - 25.9 % for long-term shifting. The storage
durations range from 6.8 to 17.9 days and 96 to 113 days, respectively. The
storage durations can therefore only be compared for a given study setup
as they are sensitive towards the starting times. The reason is that there
are border cases that are, in some cases, covered by medium-term storage,
while other starting times require long-term storage to cover the imbalance.
If the medium-term storage covers the border case, it will be a comparably
long shift, increasing the mean storage duration.





14
D I S C U S S I O N

In this chapter, we critically reflect on the model and our results, put them
into perspective with previous work from the literature and point out
directions for future research. Sections 14.1 and 14.2 discuss the influence
of the generation mix and decentralised flexibility options on temporal
flexibility needs. Section 14.3 reflects on the limitations.

14.1 influence of the generation mix

The results show that the required storage is highly dependent on the
generation mix. The short-term flexibility need increases with the share
of PV, which can be explained by the diurnal generation pattern of PV. It
only produces electricity during the day, reaching its peak around noon
(see Fig. 13.2). While the load is also higher during the day, it spreads over
a longer period over the day, and the values are non-zero over the night.
Therefore, the higher the share of the load supplied by PV, the higher the
daily flexibility needs, as the PV generation needs to be shifted from day to
night. Wind generation seems to have a stronger influence on the medium-
term flexibility need. This can also be explained by the feed-in pattern
displayed in Fig. 13.2. Wind generation shows higher variations between
days than within a day. Therefore, the modelled short-term storage cannot
compensate for such fluctuations, and medium-term storage is needed
instead. The long-term flexibility need is lowest for a mix of 35 % PV and
65 % wind. Our results are comparable to [187], who found the optimal
mix to be between 40-50 % PV and 50-60 % wind to minimise the seasonal
storage needs (i.e. imbalances in a monthly resolution) in the European
power system. A possible reason for the small difference is most likely
that they cover the whole of Europe and the wind and PV time series
therefore differ. The presence of an optimal mix can be explained by the
partly complementing feed-in patterns of PV and wind. While PV shows
lower feed-in values in winter, wind generation tends to be higher at these
times. Therefore, combining both decreases the seasonal flexibility needs
by smoothing the feed-in. Similarly, wind generation tends to be slightly
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higher at night while PV only produces electricity during the day, reducing
the short-term flexibility needs at a certain mix of both.

The total shifted energy shows a minimum at a share of 25 % PV and 75 %
wind generation. This is relatively close to the optimum that was found
for the European system in [188], where in terms of balancing energy, they
found an optimal mix of 20 % PV and 80 % wind generation. Regarding
absolute values, our results only differ by ∼ 2 % from the ones in [196]
when adjusted to the same modelling assumptions. In a comparison of
different 100 % RE studies for Germany, the ratio of PV and wind generation
was mainly found to be between 1:5 and 1:3 [197]. Our results with 1:4 lie
precisely within that range. So overall, our results are in line with existing
literature.

While in literature, either the total or individual storage needs or a specific
mix of generation have been investigated, our study adds information on
the influence of the mix of VRES generation on flexibility needs on different
time scales. Depending on which needs to minimise, different mixes of PV
and wind generation are optimal. The investigated short-, medium- and
long-term shifting each show a minimum at a specific mix of PV and wind
generation, implying that on all these timescales, the feed-in patterns are to
some extent complementary. Depending on which time scales the energy
shifting should be minimised, a carefully chosen generation mix can reduce
these flexibility needs.

14.2 influence of decentralised flexibility options

Another contribution of our work is the analysis of the impact of EVs, HPs
and BESS on flexibility needs. In our investigations, EVs show a lower
absolute and relative increase in flexibility needs and higher absolute and
relative flexibility potential than HPs at the current mix of PV and wind
generation. The increase in energy shifting is thereby smaller than the
increase in electricity consumption, implying lower relative flexibility needs
for EV charging than for the conventional load. Nevertheless, with higher
penetrations, the share of shifted load increases. This is also observed for
HPs. The additionally required energy shifting mainly consists of short-
and medium-term storage for EVs. The uptake of HPs, on the other hand,
shows a specifically high increase in long-term energy shifting due to
the seasonality of the heat demand. This is caused by the fact that the
seasonal pattern of the heat demand is opposite to PV feed-in, with higher
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generation in summer. Furthermore, the relative increase in flexibility needs
is significantly higher than the relative increase in electricity consumption,
implying that a higher share of HP consumption has to be shifted than of
conventional load. BESS cause a net reduction in flexibility needs, mainly in
short-term energy shifting. The reference operation already yields reduction
potential, which is doubled with an optimised operation.

It has to be mentioned that the additional flexibility needs caused by EVs
and HPs and the influence of BESS also depend on the mix of generation
as shown in the last case study. For the investigation of the influence of
DFOs, we used the current mix of 41.5 % PV and 58.5 % wind generation.
For HPs, where the seasonal pattern is opposite to PV and more in line with
wind generation, higher shares of wind generation lead to lower additional
energy shifting. The effect is especially pronounced for medium- and long-
term shifting. They show large differences, with a reduction of long-term
shifting but significant increase in medium-term shifting for high shares of
wind generation and the exact opposite for high shares of PV generation.
The influence of BESS also highly depends on the generation mix. With
low shares of PV, BESS lead to an increase of short-term energy shifting
since they are operated following PV generation. However, these edge cases
are not realistic, since residential BESS are mainly installed alongside PV-
systems and consequently no BESS would be present in the 0 % PV case in
the real system. EVs, HPs and BESS mainly show the potential to decrease
short- and medium-term energy shifting. Including a flexible operation of
all DFOs therefore leads to an optimal generation mix with higher shares
of PV closer to the minimum of long- and medium-term shifting.

Overall, the potential to decrease energy shifting by EV, HP and BESS
flexibility is higher for short-term shifting, which was also found in [190].
For most of the investigated flexibility scenarios, a net decrease in short-
term shifting can be achieved by the flexible units. This means that part
of the short-term shifting caused by conventional load is also reduced by
integrating sector coupling technologies. The reason for this effect is that
part of the additionally required generation coincides with the conventional
load. The share of the conventional load that has to be covered by the storage
equivalents therefore decreases, allowing a net reduction of flexibility needs
with the smart operation of EVs and HPs, even if discharging (e.g. by V2G
or BESS) is not enabled.

Considering medium-term shifting, these flexibility needs are only signifi-
cantly reduced by shifting EV charging over different parking events. This
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would require an adjusted user behaviour and therefore stronger incentives
than shifting within standing times. Additional utilisation of V2G allows
for a simultaneous decrease of short- and medium-term energy shifting
and reduces the initial flexibility needs in the Base Case by 62 %. However,
the scenarios with higher EV flexibility are also the only ones where users
might experience any change in service quality. The TES and BESS allow for
a reduction of flexibility needs without a change of consumption behaviour
from the customer side. Similarly, in the lower flexibility scenarios of EVs,
the charging demand is still covered in the originally scheduled session.
Shifting between standing times, on the other hand, might require a higher
tolerance of lower EV battery state of charges.

The decrease in long-term flexibility needs is limited for the investigated
technologies and can mainly be influenced by choosing the right generation
mix. The remaining long-term energy shifting would have to be covered
by other technologies, such as large-scale heat storage, synthetic fuels or
hydrogen. The reduction of long-term storage is possible to a small extent
with the investigated technologies mainly due to the discrete formulation
of the different time horizons, i.e. suppose a flexible unit can shift demand
between two following medium-term periods, thereby equaling out opposite
imbalances. In that case, this will be valued as the reduction of long-term
shifting even though the shift performed by the flexible unit is not longer
than two weeks (the time horizon of medium-term storage). Indeed, the
storage durations increase with increasing levels of flexibility, implying that
the flexibility is primarily used for shorter shifts. These shorter shifts are
easier to substitute than longer shifts.

Another effect of the utilisation of flexible units is an increase in demand
through additional losses. These amount to 2.8 % and 1.5 % of the original
load for EVs and HPs, respectively. It has to be mentioned that real storage
units would also cause additional losses, unlike the modelled ideal storage
equivalents. Interestingly, the total incurred losses by V2G saturate at a
certain level, meaning that even with higher potential to use V2G, this
potential is not fully exploited. This effect implies that only a certain level
of V2G is necessary to reduce the required shifting. Additional capabilities
show only marginal benefits.

Between the DFOs, EVs show the highest reduction potential for total flexi-
bility needs, followed by BESS and lastly HPs. The ability for discharging
with V2G thereby leads to a significant increase in flexibility supply for EVs
compared to EVs Flex++, where the flexible energy is the same as for EVs
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V2G but discharging is not allowed. Comparing the observed reductions in
total flexibility needs with the estimated flexibility potential in Chapter 4,
both show the highest values for EVs at higher flexibility levels. However,
the effects for HPs and BESS differ. HPs display higher values for flexible
energy in HPs Flex++ than BESS (see Section 4.3). However, their reduction
potential for temporal flexibility needs prove to be lower. The reason might
be the reduced temporal availability of HPs (see Fig. 4.5), especially in
summer when shifting needs for PV are high. Furthermore, BESS display
higher available power and have the ability to discharge, while HPs can only
shift their electricity demand in time. The results thus stress the importance
of accounting for the temporal availability of the DFOs. They furthermore
show that the ability to discharge (BESS or EVs) can effectively increase the
ability to supply temporal flexibility needs.

14.3 limitations

We use a basic linear optimisation model to evaluate the flexibility needs
for energy shifting on different time scales. Even though these are modelled
as storage units, it has to be pointed out that the flexibility needs assessed
in this study simply reflect the need to shift energy which may not be
equivalent to the need for energy storage like in some other studies (e.g. [3],
[191]). While storage units could cover these flexibility needs, the chosen
interpretation is closer to the flexibility provided by DSM since we measure
the shifted energy instead of storage energy and power capacities. It would
be straightforward to adapt the introduced model to minimise the storage
energy or power capacity of the storage equivalents. However, our study
focuses on the potential of DSM from EVs and HPs, which is why we use
the minimisation of shifted energy as our flexibility measure. In future
work, it might nevertheless be interesting to investigate the influence of
DFOs on the required energy and power storage capacities as well as the
interaction with other flexibility options, like curtailment of excess VRES
generation or dispatchable back-up generation.

In our case study, we showcase the use of the newly introduced model. Our
goal was to approximate flexibility needs and the influence and reduction
potential of residential EVs, HPs and BESS. We chose a model that is
sufficiently simple but provides insights into the raised questions. However,
we would also like to acknowledge the assumptions and simplifications
which might have some impact onto the results. The model does not directly
consider the degradation, losses or ramping limits of any of the storage
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types. This is because our goal was to measure the theoretical minimum
in required energy shifting. In reality, however, such inefficiencies would
require higher generation as well as more shifting of energy. Further, we
assume that the electricity supply and demand as well as EVs and HPs are
perfectly known at every point in time (perfect foresight of future energy
generation and load). This is not the case in reality, as there are always
uncertainties in demand and supply forecasting. These uncertainties would
lead to higher overall flexibility needs.

Moreover, the model uses the copper plate approach, not accounting for
grid constraints. Grid constraints can restrict the energy exchange between
different regions at certain times and thus require more local balancing of
supply and demand. This effect would likely increase the total flexibility
needs in the system. In future work, it would be interesting to investigate
the interplay of grid and flexibility needs on the different timescales.

Furthermore, we model all EVs of one charging use case in an aggregated
fashion and all HPs and BESS as one single unit. While this is a com-
mon approach in energy system modelling, it can yield inaccuracies and
overestimate the flexibility potential [198]. However, the effects should be
rather small and our model proved to be insensitive to different levels of
aggregation in respective sensitivity model runs.

When integrating EVs and HPs, both technologies lead to an increase in
shifted energy with reference operation. One simple reason is that more
electricity is consumed with higher numbers of EVs and HPs. The assumed
electricity consumption per EV and HP therefore influences the additional
energy shifting. We compared our values to other studies in the mod-
elling section of DFOs (see Fig. 3.12 and 3.17). The electricity consumption
assumed for EVs in this thesis is on the lower end while the electricity con-
sumption for HPs is comparably high. Similarly, we compared the energy
and power capacities of BESS with the vales chosen in other studies in Fig.
3.20. It shows that both values are within the range of literature values but
on the higher end. However, all chosen values of EVs, HPs and BESS still
lie within assumed literature values and therefore show a reasonable order
of magnitude. Overall, projections of technology uptakes are always subject
to uncertainty. The results should therefore not be interpreted as absolute
values but the observed trends and tendencies are important.
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S U M M A RY A N D C O N C L U S I O N S

We developed a new model to quantify the flexibility needs in a 100 %
renewable power system. The model uses linear optimisation and storage
units operating at different time scales. These storage equivalents can help
to analyse the energy-shifting needs in highly renewable power systems.
We used the model to investigate the influence of the generation mix,
increased penetrations of EVs, HPs and BESS as well as the utilisation
of their flexibility potential on flexibility needs in terms of short- (daily),
medium- (monthly) and long-term (seasonal) energy shifting.

The results show that the flexibility needs in a power system supplied by
only PV and wind highly depend on the generation mix. Compared to a
continuous generation (representing a stable base load power supply by
thermal generation units) even the optimal mix of 25 % PV and 75 % wind
generation increases the total flexibility needs from 37.6 TWh to 127.0 TWh,
which amounts to 7.6 % to 25.6 % of the served load. The extreme cases
of 100 % PV and 100 % wind feed-in lead to flexibility needs of 284.5 TWh
and 158.6 TWh, an increase of 111.4 % and 24.9 % compared to the optimal
mix. Choosing the optimal mix of PV and wind generation can therefore
contribute to minimising the flexibility needs of a 100 % RE system.

Increasing penetrations of private EVs and residential HPs lead to flexibility
needs of 167.1 TWh and 179.5 TWh in the German system for 100 % pene-
trations in case of reference operation in which no flexibility is provided by
these devices. This signifies an increase of 21.0 % and 30.0 % of total flexibil-
ity needs compared to the base case without EVs and HPs. The additional
energy shifting caused by EVs is mainly short- and medium-term. HPs, on
the other hand, mainly increase the long-term flexibility needs. BESS under
reference operation decrease the total flexibility needs by 12.3 % for 100 %
penetration, thereby only influencing the short-term energy shifting.

EV flexibility proves to be more effective in reducing the flexibility needs
than small-scale TES added to the HPs. Allowing shifting over standing
times and the deployment of V2G even lead to a net reduction of total
shifted energy with increasing penetrations of flexible EVs. With the highest
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level of flexibility using V2G, the total shifted energy can be decreased to
51.9 TWh for a 100 % EV penetration, which corresponds to a reduction of
62.4 % compared to the base case. The EV flexibility can cover the entire
short-term and large shares of medium-term flexibility needs. The potential
to reduce long-term flexibility needs is comparably small. For the maximum
flexibility of HPs equipped with a TES that allows shifting of the heat
demand by at least eight hours, a net increase in total shifted energy can be
observed with increasing penetrations of flexible HPs. The total flexibility
needs amount to 152.0 TWh for the German system in this case. This means
the increase in total flexibility needs can be reduced to 10.1 % compared to
the base case. The reduction potential thereby primarily lies in the short-
and medium-term energy shifting, where a net reduction can be achieved.
However, this is outweighed by the increase in long-term shifting needs.
An optimised operation of BESS at 100 % penetration can more than double
their reduction of flexibility needs compared to the reference operation to
27.6 % compared to the base case, thereby still mainly reducing short-term
energy shifting but also slightly decreasing medium-term shifting.

The combined integration 100 % penetration of the three decentralised flexi-
bility options shifts the optimal generation mix to 40 % PV and 60 % wind
for a flexible operation of the DFOs. Compared to the optimal generation
mix without EVs, HPs and BESS, the total flexibility needs can be decreased
by 35.3 %, covering nearly all short- and large shares of the medium-term
energy shifting. This means that even though the total electricity consump-
tion increases significantly with increasing shares of EVs and HPs, the
amount of energy that has to be shifted to balance generation and demand
decreases with the deployment of decentralised flexibility.

In summary, our model facilitates a comparison of the effectiveness of
different flexibility options and measures to reduce flexibility needs on
different time scales. The results show that a carefully chosen mix of PV
and wind generation can reduce the flexibility needs of a 100 % RE system
and that decentralised flexibility options have a large potential to decrease
short- and medium-term flexibility needs. Flexibility provision from pri-
vately owned EVs, HPs and BESS should therefore be incentivised to untap
this potential. One possibility is to forward time-varying price signals to
consumers to alter their consumption behaviour. The following part of the
thesis therefore investigates the influence of different price structures on
the consumption behaviour of residential consumers and the influence on
temporal and geographic flexibility needs.
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M O T I VAT I O N A N D R E L AT E D W O R K

The power system is transitioning towards a cleaner and more efficient
energy generation, causing numerous changes in the power system [148].
One of the most important changes is the increasing use of renewable
generation. Renewable energy sources are often connected directly to the
distribution grid. This distributed generation may cause reverse power
flows, new congestion and voltage issues, which need to be addressed by
the distribution system operator (DSO) [148]. Additionally, the distributed
generation is intermittent, which increases the importance of flexibility in
the grid [199]. If supply and demand cannot be balanced, this will cause
stability issues and might even lead to blackouts or brownouts.

Another challenge is the increasing electricity demand caused by electric
vehicles (EVs) and heat pumps (HPs), whose numbers are increasing. How-
ever, these new consumers also offer the possibility to operate them flexibly,
which can reduce the additional stress on the grids. Similarly, battery en-
ergy storage systems (BESS) could be used in a system-friendly way when
incentivised correctly. So far, few such incentives exist for households to
adapt their behaviour according to system needs. However, with the in-
creasing penetration of decentralised flexibility options, finding the right
incentive systems is gaining in importance. One possible solution is to adapt
electricity tariffs, combining suppliers‘ costs, taxes and network tariffs. De-
signing future tariffs in a way that effectively incentivises system-friendly
consumption behaviour is therefore an important challenge.

Various studies analyse network tariffs and how they can efficiently prevent
congestion and fulfil the new requirements of the changing power system.
The most commonly discussed tariffs are different forms of energy-based
and capacity-based tariffs. However, fixed tariffs and flexibility markets are
often discussed as well. In [199], energy tariffs, capacity tariffs and a flexi-
bility market were simulated and compared using centralised optimisation
as a benchmark. Different penetrations of EVs were analysed as flexibility
options, and the authors showed that, except for energy tariffs, all cost
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structures could prevent congestion. However, there was no clear winner.
Under different circumstances, different options were beneficial.

While most literature has focused on cost-reflectivity (e.g. [200], [201]) and
congestion management (e.g. [199], [201]), the first study in Chapter 17
focuses on the geographic flexibility needs, i.e. grid reinforcement and
resulting costs, and the temporal flexibility needs, i.e. required energy shift-
ing on different time scales. Additionally, the flexibility option considered
is most often solely EV charging (e.g. [199], [100]). In contrast, this study
includes heat pumps with thermal storage, battery household storage and
photovoltaics (PV) curtailment as additional flexibilities.

The second study in Chapter 18 focuses on network tariffs, as one important
price component of electricity tariffs. Traditional network tariff structures
were established when electricity generation and demand were, in the ag-
gregate, easily predictable and the demand relatively inflexible [202]. In
recent years, however, these conditions have changed due to the energy
transition and the associated increasing integration of distributed energy
resources (DERs) [203], [204]. DERs are assets such as rooftop PV systems,
batteries, EVs, heat pumps, and other resources connected to the distribu-
tion grid. These resources challenge the grid’s traditional structure, which
was not originally designed for their volatility and level of penetration [202].
On the other hand, with the right incentives, flexible loads and decen-
tralised storage offer the possibility to be part of the solution, for example,
to resolve grid congestion [205]. The question arises as to whether the
prevalent tariff structures can still fulfil the new requirements leading to
appropriate incentives under these changes [206].

Recently, network tariff design has been subject to much debate, e.g. in
Switzerland, with the revision of the energy supply act [206]. Considering
the number of stakeholders involved in the discussion, e.g. DSOs and regu-
lators, finding a suitable tariff structure that satisfies the needs of everyone
is difficult. However, what are the needs and motivations of stakeholders
regarding network tariff structures, and what are the resulting requirements
with respect to these tariffs? Identifying network tariff requirements under
increased integration of DERs has received limited attention in the litera-
ture and practice. Most studies focus on proposing new tariff structures
that are suitable considering one or more specific criteria, e.g. reducing
network stress and necessary reinforcement (e.g. [19], [207]), cost recovery
(e.g. [208]–[210]) or ensuring fairness (e.g. [211]–[213]). Other works only
investigate specific tariff types (e.g. [214]–[216]).



motivation and related work 259

There have also been approaches to evaluate several different tariff struc-
tures based on various criteria. Abdelmotteleb, Gómez, and Reneses as-
sessed the performance of different network tariffs based on four criteria:
network cost recovery, deferral of network reinforcements, efficient con-
sumer response and recognition of side-effects on consumers [201]. They
used the analytic hierarchy process (AHP) to rank the network tariffs,
putting equal weight on all criteria. They found that the cost-reflective
design outperforms the traditional tariff structures. Brown, Faruqui, and
Lessem determined five criteria for network tariff design in a stakeholder
process: simplicity, economic efficiency, adaptability, affordability and eq-
uity [57]. They provided a simplified comparison of different network tariffs
based on these criteria and assessed if they show a weak, medium or strong
performance towards the respective criterion.

Hennig et al. proposed quantitative indicators for commonly used objectives
for distribution network tariffs and discuss their interdependence [202].
They showcased that some of the objectives contradict each other leading
to trade-offs between different tariff options. Since there is no one-size
fits all solution, they proposed that relevant stakeholders agree on a set
of objectives and their weighting with respect to each other. Our work
contributes to filling this gap and proposes a process that includes identify-
ing and weighting relevant criteria by stakeholder involvement. Vaughan,
Doumen, and Kok also used stakeholder weighting to determine the rel-
ative importance of relevant criteria [217]. However, their set of criteria
was determined by a literature review without further involvement of the
stakeholders. Nair and Nair compared network tariffs along four main
criteria (economic efficiency, revenue model, non-discriminatory design
and customer satisfaction) and relevant sub-criteria determined from the
literature using a Benefits-Opportunity-Costs-Risks model [218]. Between
the investigated tariffs, they found the hybrid tariff of energy and capacity
charges with coincident peak pricing to be the best alternative.

So far, the proposed frameworks either work with commonly used criteria
from the literature [201], [202], [217], [218] or use a simplified evaluation
method without quantitative performance indicators [57]. Furthermore,
most of the works introduced so far use an equal weighting of the crite-
ria [57], [201], [202], [218] and do not assess their importance relative to
each other. We expand the existing literature by proposing a process that
includes identifying relevant criteria, their weighting against each other
and a quantitative assessment of the level of fulfilment by different network
tariffs. We showcase the applicability of the proposed process by applying
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it in a Swiss environment. In our work, we extract the relevant criteria from
stakeholder interviews and determine the weights by expert weighting.
These are combined with quantitative performance indicators using multi-
criteria decision analysis (MCDA), which includes methods for decision
making in complex, multi-dimensional problem settings and is therefore
widely used in the field of sustainable energy [219].

We apply the framework to a case study and find that the best tariff depends
on the expert weightings. However, in the scenario with high flexibility,
capacity-based tariffs on average perform better than the standard volumet-
ric tariff. Our results therefore emphasise the necessity for adapted network
tariffs in future grids with high penetrations of DERs. Our proposed pro-
cess and the open source evaluation framework can provide an informed
decision process to determine the most suitable network tariff considering
the most critical design criteria.

In summary, the main contributions of this part of the thesis (Chapters 17

and 18) are:

• Development of a consumer-based model to investigate the influence
of different electricity tariffs on consumption profiles of households.
Investigation of their influence on temporal and geographic flexibility
needs.

• Introduction of a coherent process to identify and weigh relevant
decision criteria for network tariff design. Translation of identified cri-
teria into quantitative performance indicators to measure the diverse
criteria.

• Synthesis into an open-source evaluation framework for network
tariffs. The framework is modular, easily adaptable and can be applied
to a wide range of tariff structures to allow for a better comparison
and informed decision support.
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I N F L U E N C E O N F L E X I B I L I T Y N E E D S

The content of this chapter is extended from the published paper: L. Kundert, A. Hei-
der and G. Hug, "The Influence of Different Network Tariffs on Distribution Grid
Reinforcement Costs", 2023 IEEE Belgrade PowerTech, Belgrade, Serbia, 2023 [19],
Copyright ©2023, IEEE. Compared to the original paper, we investigate additional
tariffs, vary the penetration of distributed energy resources and determine the
temporal flexibility needs in addition to the distribution grid reinforcement.

The transition towards a renewable power grid raises various challenges in
distribution grids, potentially leading to significant future geographic and
temporal flexibility needs. This chapter analyses how different electricity
tariffs can reduce these needs by steering the use of decentralised flexibility
options, namely curtailment of photovoltaic generation, battery storage
systems, smart charging, and usage of thermal energy storage to shift heat
demand. Therefore, the reaction of prosumers with different combinations
of these flexibility options is modelled by a cost-minimising consumer-based
optimisation1. With these, a case study for six different grids in Germany is
conducted for various combinations of different energy- and capacity-based
tariff components.

The remainder of the chapter is structured as follows. Section 17.1 intro-
duces the developed consumer model. Section 17.2 presents the case study,
including the simulated customers, DER penetrations and investigated tariff
structures. In Section 17.3, the results are presented and discussed. Finally,
conclusions are drawn in Section 17.4.

17.1 methodology - consumer optimisation

If the electricity tariff is designed well, it can incentivise the consumers to
shift their flexible demand to times when the grid has free capacity, thus
mitigating the need for distribution grid reinforcement. On the other hand,
it can give incentives to consume at times of high renewable feed-in, thus
helping the integration of variable renewable energy sources (VRES). In

1 The developed model is available open source under https://github.com/AnyaHe/NeTS.git.
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order to simulate the consumers‘ reaction to different tariffs, we carry out a
consumer-based optimisation where the consumers’ objective is to minimise
their costs. It is assumed that every consumer has an energy management
system (EMS) that manages their flexibility potential in this cost-optimal
way. The total electricity consumption of the residential consumers and
their EVs and the heat consumption provided by HPs are assumed to be
fixed and cannot be reduced by the EMS.

Depending on the flexibility options available to the consumer, the opti-
misation problems differ. Here, the complete optimisation problem for a
prosumer with all flexibility options is displayed. If other consumers do
not own a specific flexibility option, the respective variables and constraints
can be omitted. For simplicity, we do not account for taxes, levies and sur-
charges but focus on different combinations of network tariffs and suppliers‘
costs.

The objective is to minimise the total costs of the consumer πtotal and a
penalty term penev for discomfort caused by late EV charging:

min πtotal + δev · penev, (17.1)

where δev is the weighting factor for the penalty term for late EV charg-
ing. These terms and their meaning are further described in the respective
paragraph about EVs. The costs of a consumer πtotal are the sum of elec-
tricity purchase costs and network tariff minus their revenues from PV
feed-in:

πtotal = ∑
t∈T

(
(π

p
t + πe

t ) · pL
t

)
+ πcl · pL + πc f · pF

+ ∑
sg∈SG

(
πs

sg · pSG
sg,t

)
− ∑

t∈T

(
π

pv
t · pF

t

)
,

(17.2)

where π
p
t is the suppliers‘ cost, πe

t the energy-based component, πcl and
πc f the capacity-based components on peak load and peak feed-in of the
network tariff and πpv the feed-in tariff. Price components πs

sg describe
a segmented tariff where the price for power consumption is dependent
on the power drawn from the grid. Therefore, different segments SG are
defined, within which the price for the power is constant. If the maximum
power PSG,max

sg of one specific segment sg is reached, the additionally re-
quired power is billed with the next more expensive segment. The sum of
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power pSG
sg,t within all segments thereby has to cover the load drawn from

the grid:

0 ≤ pSG
sg,t ≤ PSG,max

sg ∀sg ∈ SG, t ∈ T (17.3)

∑
sg∈SG

pSG
sg,t = pL

t ∀t ∈ T. (17.4)

Variable pL
t is the power drawn from the grid, i.e. equal to the residual

load (ResL) when the load exceeds the feed-in and zero otherwise, and the
maximum is denoted by pL. Analogously, pF

t is power fed back to the grid,
equal to the negative residual load when the feed-in exceeds the load and
zero otherwise. The maximum is denoted by pF. Both variables result from
the power balance of the household:

pL
t − pF

t = PD
t + pHP

t + pEV
t − pPV

t + pBS
t ∀t ∈ T, (17.5)

pL
t , pF

t ≥ 0 ∀t ∈ T, (17.6)

where PD
t is the inflexible household load, pHP

t and pEV
t the flexible load of

HPs and EVs, pPV
t the PV feed-in and pBS

t the battery (dis)charging.

Heat pumps are modelled with an ideal thermal energy storage (TES) that
provides flexibility to shift their demand according to Section 3.3.6. It is
assumed that soeTES

t at the end and right before the start of the simulation
period are equal to 1

2 CTES
hp , i.e. half of the thermal energy capacity of the

thermal energy storage CTES
hp .

EVs are modelled analogously to Section 3.2.6 with the flexibility to shift
their charging demand within their standing time. It is furthermore as-
sumed that the preferred charging strategy is to charge as early as possible.
To model growing user discomfort with deviation from this preferred
charging, we introduce the penalty term penev, adding the following con-
straint:

penev = ∑
t∈T

(Et−et)
2, (17.7)

where et is the cumulative electricity consumption at the home charging
station and Et the upper energy bound, which is obtained with the reference
charging as early as possible. It is assumed that the energy level at the end
and right before the start of the simulation period are equal to 1

2 (Et + Et),
i.e. the middle of lower and upper energy bounds Et and Et.
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PV-systems are modelled in a way that they can be curtailed, i.e.:

0 ≤ pPV
t ≤ PPV

t ∀t ∈ T, (17.8)

where PPV
t is the PV feed-in without curtailment and pPV

t is the actual
feed-in after curtailment.

BESS are modelled as ideal batteries according to Section 3.4.4. The state of
charge at the end and right before the simulation period are fixed to 1

2 CBS
bs ,

i.e. half of the energy capacity of the battery CBS
bs .

17.2 data / case study

The following section explains the setup of the simulated case study.
Figure 17.1 displays the general structure of the study. Different electricity
tariffs, i.e. combinations of suppliers‘ costs and network tariffs, serve as
input for the introduced consumer optimisation. The obtained operation
time series are then used to examine the effect on geographic and temporal
flexibility needs.

The simulated consumer groups and characterisation of DERs are sum-
marised in Section 17.2.1. The simulated scenarios regarding DER penetra-
tion are explained in Section 17.2.2. Section 17.2.3 includes the investigated
electricity tariffs and Section 17.2.4 the indicators used to measure geo-
graphic and temporal flexibility needs.

Consumer

Operations

Electricity

Tariffs

Geographic Flexibility Needs:

Grid Reinforcement

Temporal Flexibility Needs:

Storage Equivalents

Figure 17.1: Research design of study.
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Figure 17.2: Distribution of annual consumption of residential loads in the origi-
nal grids (left) and the new sample (right).

17.2.1 Consumers

We evaluate the electricity tariffs for 500 different consumer profiles in
hourly resolution. For these, we use a subset of profiles from [220]. The pro-
files are chosen such that the distribution of annual consumption matches
the distribution within the distribution grids introduced in Section 3.1.5
(see Fig. 17.2). We use updated profiles to capture better the variation of
individual consumption profiles and higher individual peaks of consumers
than the standard load profiles of the original grids.

Similarly, 500 of each DER are modelled using the sizing and technical
values described in the respective sections of Chapter 3. For clarity, the
underlying assumptions are briefly summarised below.

pv-systems - The size of PV is drawn from a gamma distribution fitted to
recent sales statistics. The mean size of the obtained sample is 8.4 kW.
More details can be found in Section 3.4.1.

battery storage - It is assumed that batteries are only purchased in
combination with a PV-system and sized accordingly. Consequently,
the battery capacities are sized with a ratio of 1

kWh
kW to the nominal

power of the PV-system, which was found to be an economic ratio
by [221]. The maximum charging power of the battery is chosen as a
0.6 kW

kWh ratio to the battery capacity [140] and the battery is assumed
to have a 100 % charging and discharging efficiency. The mean battery
capacity and charging power of the sample are thus 8.4 kWh and
5.0 kW.
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heat pumps with thermal energy storage - The thermal capacity
of HPs is drawn from a gamma distribution fitted to recent sales
statistics. The mean of the obtained distribution is 13 kW of thermal
capacity. The electric power of the heat pump is obtained with the
minimum coefficient of performance (COP) (see more details in Sec-
tion 3.3), and the mean of the obtained sample amounts to 7 kW. The
TES is sized to cover the highest heat demand of two consecutive
hours. The sample has a mean TES capacity of 19 kWh and consists of
81 % air-sourced and 19 % ground-sourced HPs. We assume an ideal
TES, i.e. efficiencies of 100 %.

electric vehicles - Regarding EVs, home charging stations modelled
according to Section 3.2.2 are used. It has to be mentioned that it is
still assumed that a significant share of the total charging demand
occurs at other charging opportunities, i.e. at work or public charging
points. The charging efficiency is assumed to be 90 % [115], and the
weight for the penalty term is set to δev = 0.001.

17.2.2 Scenarios

In order to determine the effect of different network tariffs on consumer
behaviour and flexibility needs under different local conditions, we study
the six distribution grids introduced in Section 3.1.5 under varying pene-
trations of DERs. Four scenarios are compared. In the first, we randomly
choose respectively 10 % of the households to distribute EVs, HPs and PV
systems. The loads are drawn independently for the three technologies,
meaning that certain households own a combination of them. For simplicity,
we assume that every PV unit has a BESS installed alongside since already
nowadays, ∼ 80 % of residential PV is installed together with battery stor-
age [18]. In the second scenario, respectively 50 % of the residential loads
are chosen to own EVs, HPs and PV with BESS. In scenarios three and four,
90 % and 100 % of the residential loads are chosen. The resulting shares of
different household groups are displayed in Fig. 17.3. Note that, for clarity,
percentages p ≤ 1 % are not labelled and that the values in the individual
grids can slightly differ because of the random choice.
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Figure 17.3: Distribution of consumer groups in the simulated scenarios. The
displayed values are percent of total consumers in all six grids.

17.2.3 Electricity Tariffs

All investigated combinations of the electricity tariffs used in this study
are summarised in Table 17.1. The electricity price comprises network
tariff costs, suppliers’ costs, different taxes, levies and surcharges. In our
investigations, the taxes, levies and surcharges are omitted since they are
not the focus of this study and assumed to be constant, thus not giving
incentives to adapt the consumption behaviour. In the first tariffs, we focus
on the network tariff. The suppliers’ cost is fixed at 8 ct/kWh in these cases,
which is the rounded value of the year 2021 in Germany [222]. In the last
two tariffs, the suppliers’ costs are varied, investigating the interaction of
time-dependent suppliers’ costs with selected network tariff structures. The
PV feed-in tariff is the same for all cases except for the variation of suppliers’
cost (explained later in this section), and it amounts to 6.24 ct/kWh, which
is the feed-in tariff of Germany in July 2022 [223].

This study distinguishes two network tariff components: energy- and
capacity-based. The energy-based component was chosen because it is the most
commonly used one [224]. We simulate three different types, a constant
value, a day/night charge with two different values for day times (d: 07:00 -
21:00) and night times (n: 21:00 - 07:00) and a charge depending on the
residual load (ResL) of the grid. If it is one constant value, the case name
contains Ec whereas an energy-based day/night component is denoted
with Ed/n. The implemented energy-based day/night component Ed/n is
similarly used in some countries such as the Netherlands [225], Switzer-
land and Italy [226]. The grid-dependent residual load based component
is denoted by Er and investigated in two variations. One uses the residual
load at the medium voltage (MV)/low voltage (LV)-transformers (Er) and
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Table 17.1: Investigated electricity tariffs

Tariff ID
Energy

component
[ct/kWh]

Capacity
load

component
[€/kW]

Capacity
generation
component

[€/kW]

Suppliers’
cost

[ct/kWh]

Ec 8.0 0 0 8.0
Ed/n d: 8.5, n: 5.0 0 0 8.0
Er Grid-based 0 0 8.0
Er−mv Grid-based (MV) 0 0 8.0
CL 0 122.8 0 8.0
CSG 0 1: 60, 2: 90, 3: 140 0 8.0
CLF 0 122.8 12.3 8.0
ErCLF Grid-based 61.4 12.3 8.0
EcSr 4.0 0 0 ResL-based
CLFSr 0 122.8 12.3 ResL-based

one the residual load at the high voltage (HV)/MV-transformer (Er−mv).
To calculate the residual load, the household load is updated with the
resulting consumer profiles of the constant energy-based tariff Ec, which is
the reference in the following investigations as it does not provide time- or
power-dependent incentives to change the consumption behaviour.

The capacity-based components are a promising means to help with grid
issues by reducing peaks, which cause grid reinforcement needs [202].
Capacity-based components tend to be charged only for peak demand.
However, with a growing share of decentralised generation, feed-in peaks
might become a driver of necessary grid reinforcement. We therefore also
analyse a capacity component based on feed-in peaks in this work. The
constant capacity components are implemented as an annual tariff and
levied on the maximum demand or feed-in of the year. If the tariff has a
capacity charge on peak consumption, the case name includes CL, and a
capacity charge raised on peak consumption and peak feed-in is denoted
with CLF. Additionally, we investigate a segmented tariff, where the charge
on the current power consumption depends on the power drawn from
the grid. We choose three segments, depending on the load time series of
the investigated consumers. The maximum of the first segment is set to
the mean of all 50 % quantiles of the customer load profiles. The second



17.2 data / case study 269

one is set such that the maximum of the first and second is equal to the
mean of all 90 % quantiles. For the investigated load profiles, this results
to PSG,max

1 = 0.51 kW and PSG,max
2 = 1.15 kW. The maximum power of the

third segment is set to a sufficiently high value PSG,max
3 = 1 MW such that

it covers all peak values. If the segmented tariff component is included, the
tariff name comprises CSG.

All network tariffs are designed so that inflexible consumers pay the same
price. The constant energy-based component is fixed to πe

t = 8 ct/kWh
(rounded value of the year 2021 in Germany [222]). The day and night tariff
is composed of πe

d = 8.5 ct/kWh and πe
n = 5 ct/kWh. The resulting load

capacity component equals πcl = 122.8 €/kW. The capacity component for
feed-in is set to 10 % of the capacity load component, i.e. πc f = 12.3 €/kW.
The prices for the segmented tariff are set to πs

1 = 6 ct/kW, πs
2 = 9 ct/kW

and πs
3 = 14 ct/kW. If the tariff simultaneously contains energy and ca-

pacity components for load, both values are adjusted to half the original
values. This way, inflexible consumers also pay the same in the combined
cases.

For the energy components depending on the residual load of the grids, the
residual load time series are shifted so that all values are positive. Further-
more, the shifted time series is scaled to ensure that inflexible consumers
pay the same as for the constant energy tariff. To limit computational
complexity, we cluster the six MV and 1052 LV grids depending on their
technological composition and use the mean residual load of all grids
within that cluster. Figure 17.4 displays the mean technological composition
within the five simulated clusters, and Fig. 17.5 the price time series which
are all scaled to a mean of 8 ct / kWh for easier comparison. Note that
the mean prices used in the simulations differ to achieve the same price
for inflexible consumers (1: 6.3 ct / kWh, 2: 7.2 ct / kWh, 3: 6.6 ct / kWh, 4:
7.1 ct / kWh, 5: 5.8 ct / kWh).

The number of customers being exposed to the time series of a certain
cluster with tariff Er changes between the scenarios, but all customers at
the same MV/LV-transformer get the same tariff in any case. Figure 17.6
displays the number of customers assigned to the different clusters in the
investigated grids and scenarios. In Scenario 1, the customers are distributed
between the different clusters with high shares of Clusters 2 and 3. With
increasing shares of DERs, more customers are assigned to Cluster 3, which
shows high relative shares of DERs (see Fig. 17.4). For the tariff based on
the residual load of the MV grid Er−mv, the assignment to the clusters
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Figure 17.4: Mean technological composition of simulated clusters.

Table 17.2: Assigned clusters for different grids and scenarios under tariff Er−mv.

Load-1 Load-2 PV-1 PV-2 Wind-1 Wind-2

Scenario 1 4 4 2 2 3 3

Scenario 2 3 4 2 3 3 3

Scenario 3 3 3 3 3 3 3

Scenario 4 3 3 3 3 3 3

is summarised in Table 17.2. In Scenario 1, the load-dominated grids are
assigned to Cluster 4, the PV-dominated grids to Cluster 2, and the wind-
dominated grids to Cluster 3. Again, with increasing shares of DERs in the
other scenarios, more grids are assigned to Cluster 3. In Scenario 2, four of
the six grids and in the other two scenarios, all are assigned to the same
Cluster 3.

To investigate the interplay of different incentive schemes, we simulate a
scenario variation with time-varying suppliers’ cost. Therefore, a price based
on the residual load a 100 % VRES German system (see Base Case in Section
13.1.2) is used. The residual load is shifted such that only positive values
occur. For a comparable price scenario, we scale the time series by dividing
it by its average and multiplying it with the constant suppliers’ cost of
8 ct/kWh used in the other cases. Figure 17.7 shows the resulting time
series and, as a comparison, the day-ahead prices in Germany for 2019 (also
scaled to a mean of 8 ct/kWh). They show the same characteristics, but the
real price time series displays higher fluctuations and negative prices. The
scenario variations including the ResL-based suppliers’ costs are indicated
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Figure 17.7: Annual price time series of the residual load-based suppliers’ cost
and day-ahead prices in the German bidding zone for the year 2019.
The displayed time series are scaled to a mean of 8 ct / kWh.

with the suffix Sr. We also assume time-varying PV revenues for this tariff.
We therefore use the same price time series as for the load but scale it to a
mean of 6.24 ct/kWh to be in line with the other tariffs. With the obtained
price time series, consumers pay more in times of high residual load, and
PV feed-in achieves high revenues in these times. The opposite is the case in
times of low or negative residual load. Prices for consumption are thereby
still always higher than the revenues from PV feed-in.

17.2.4 Flexibility Needs

After the consumer behaviour is determined, we compare the effects of the
different electricity tariffs on geographic and temporal flexibility needs and
their supply.

As a measure of geographic flexibility needs, the necessary grid reinforce-
ment costs are calculated with the open-source model eDisGo [75]. There-
fore, the consumers’ time series are updated according to the results of the
optimisation problems, and an AC power flow is conducted with the result-
ing grid to obtain bus voltages and component loading. If the calculated
values exceed the predefined limits, parallel lines and transformers are
installed in an iterative process until all voltage violations and overloading
issues are resolved. We refer to Section 3.1.3 for a more detailed description.
We use the predefined limits under normal operation for the voltage with
a minimum of 0.9 p.u. and a maximum of 1.1 p.u. whereas the maximum
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component loading is limited to 1.0 p.u. (see Section 3.1.2). To keep the
simulation time sensible, we only run calculations for two critical weeks
of the year: the week with the highest and lowest residual load of the
respective grid and scenario.

The temporal flexibility needs are determined with the storage equivalent
model introduced in Section 12. It measures the required energy shifts
on a short, medium and long time scale. The acquired time series of the
consumers are therefore scaled to the total number of residential buildings
in Germany and integrated into the Base Case of the model, representing
a 100 % VRES German power system with 41.5 % PV and 58.5 % wind
generation. To do so, the scaled time series of residential consumers without
DERs is subtracted and replaced by the new aggregated time series with
the respective tariff and DER penetration of the current scenario.

17.3 results and discussion

In the following, the effects of the different tariff options on consumers‘
profiles, flexibility needs and cost implications are presented and discussed.
Section 17.3.1 showcases the influence of the investigated tariffs on the
grid residual load. Section 17.3.2 displays and discusses the influence of
individual price components on consumer profiles and flexibility needs.
Sections 17.3.3 and 17.3.4 display the change in geographic and temporal
flexibility needs for all investigated tariffs. The implications for the costs
paid by the consumers are presented in Section 17.3.5. Section 17.3.6 finally
discusses limitations and avenues for future research. In all investigations,
the tariff with only a constant energy-based component Ec serves as the
base case as it is the most commonly used tariff in Germany and does not
give temporally resolved incentives.

17.3.1 Grid Residual Load

The effects on geographic and temporal flexibility needs depend on the
consumer profiles and how they interact with existing generation and load
in the grids. Therefore, we present the effects of the different electricity
tariffs on the grid residual load. The results are displayed for a selected
load- and PV-dominated grid. These two grids are chosen as they best
reflect the different effects of the tariff components. Similar effects can be
observed in all other grids but to a smaller extent. For the load-dominated
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Figure 17.8: Residual load with different electricity tariffs.

grid, we showcase the week of highest residual load in Scenario 2 and for the
PV-dominated grid the week of the lowest residual load in Scenario 2. This
scenario is chosen as the intermediate scenario, and we will use the same
weeks in the following visualisations for a clearer comparison. All changes
between the scenarios and tariffs are thus caused by increasing shares and
different operations of DERs. Note that the weeks of actual highest and
lowest residual load can differ between the scenarios.

Figure 17.8 displays the residual load of both grids with all investigated
tariffs in Scenario 1 (S1) on the top and Scenario 4 (S4) below. The results
show that with low penetration of DERs in Scenario 1, the effects of the
different tariffs are limited in both grids. In the load-dominated grid (upper
left), the peaks around noon are slightly increased by tariff EcSr as it gives
incentives to consume around noon to use PV generation. The tariffs based
on the grid residual load (Er and Er−mv) shift demand to the night valleys
since the conventional load and consequently the prices are low in these
times. In the PV-dominated grid (upper right), the tariffs with capacity
components slightly decrease both load- and feed-in-driven peaks. Other
than that, the profiles look similar with all investigated tariffs.

In Scenario 4 with 100 % DER penetration, the difference between the in-
vestigated electricity tariffs is higher. In the week of high load in the
load-dominated grid (lower left), tariffs with only energy-based incentives
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(Ed/n, Er, Er−mv, EcSr) lead to new, partly significantly higher, peaks than
the other tariff options. No such new peaks are visible in the week of high
feed-in in the PV-dominated grid (upper right). On the contrary, some
tariffs lead to lower negative peaks in the residual load. The tariffs with a
capacity feed-in component (CLF, ErCLF, CLFSr) are especially effective in
doing so but also suppliers‘ costs based on the residual load (EcSr) reduces
the feed-in peaks to a small extent. In general, the effect of the different
tariffs on load peaks is higher than on feed-in peaks.

17.3.2 Influence of Individual Price Components

To showcase the effects of the different tariffs in more detail, the consump-
tion profiles of residential loads are discussed along the different tariff
components in the following. They are presented for the same setup (dis-
played grids, scenarios and weeks) as explained in the previous section.
Additionally, their effects on temporal and geographic flexibility needs are
presented and discussed.

Energy-based Tariff Component

Fig. 17.9 shows the residual load of residential consumers for the four purely
energy-based tariffs. The results are displayed for Scenario 1 (S1) with low
DER penetration and Scenario 4 (S4) with high DER penetration. For the
consumption profile in the load-dominated grid with low DER penetration
(upper left), we see a smoothing effect due to the Ed/n, Er and Er−mv tariffs
compared to the base case. Especially the peaks in the evening hours are
reduced by shifting demand into the night. On the other hand, focusing
on feed-in peaks in the PV-dominated grid (upper right), only the tariffs
based on the grid residual load Er and Er−mv have a positive effect on these
peaks. The reason is that shifting demand into the night with Ed/n conflicts
with the local situation in the grid where a high feed-in excess is present
on sunny days. Load peaks, on the other hand, are still reduced in this
case.

With high DER penetration in Scenario 4, the time-varying energy-based
tariffs introduce new load peaks in the load-dominated grid (bottom left).
The day and night tariff Ed/n causes peaks in the evening when the low-
price period starts through synchronisation of EV charging. Another peak
occurs in the early morning when the low-price period ends through a
synchronisation of HPs. For the tariffs based on the grid residual load
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Figure 17.9: Residual load of residential consumers for representative load-
dominated grid in the week of high residual load (left) and for
representative PV-dominated grid in the week of low residual load
(right). The time series are displayed for the energy-based tariffs in
a scenario of low (top) and high DER penetration (bottom).

Er and Er−mv, even higher new peaks occur during the night and early
morning. In these times, the conventional load is low and consequently
the prices as well. Additionally, smaller load peaks occur around midday
during high PV feed-in. The influence of the tariffs is less pronounced in
the PV-dominated grid in the week of highest feed-in (bottom right). Again,
the tariffs based on grid residual load Er and Er−mv slightly decrease the
feed-in peaks. The newly introduced peaks of all tariffs are comparably low
in this case.

Table 17.3 summarises the effects of the energy-based tariffs on the total
geographic and temporal flexibility needs in all investigated grids. The
values are displayed relative to the flexibility needs in the base case (Ec) of
the respective scenario. The results show that over the different tariffs and
scenarios, only Ed/n achieves a slight decrease in reinforcement costs with
low penetrations of DERs. In all other scenario combinations, the flexibility
needs either stay nearly unchanged or increase significantly.

For 100 % DERs in Scenario 4, the increase in costs reaches up to 261 %
compared to the base case for Er−mv. Tariff Er reaches similarly high values.
The day and night tariff Ed/n increases the reinforcement costs by 88 %
compared to the base case in the same scenario. The less significant increase,
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Table 17.3: Geographic and temporal flexibility needs with energy-based tariffs
relative to flexibility needs in the base case.

Reinforcement costs [%] Shifted energy [%]
S1 S2 S3 S4 S1 S2 S3 S4

Ed/n 98.6 147.8 160.4 188.0 101.5 107.3 110.6 110.9
Er 107.4 206.2 260.9 341.4 99.9 103.2 108.5 109.8
Er−mv 138.8 204.3 340.2 361.2 100.1 103.1 109.1 110.6

which is in line with the lower load peaks displayed in Fig. 17.9, is likely
because there are longer time periods with the same price. This way, the
flexible load can be shifted into a longer interval. In contrast, for the
temporally resolved tariffs, the flexible load is concentrated on individual
time steps with low prices. In Scenario 3, tariff Er also shows a lower
increase in costs than Er−mv, most likely because consumers in different
LV grids follow different price time series and their peaks therefore do not
necessarily coincide, which is the case when all consumers follow the same
price signal.

The increase in temporal flexibility needs is similar for the three tariffs.
The day and night and grid-based tariffs (Ed/n, Er, Er−mv) increase the
total shifted energy by 10 - 11 % with the highest penetration of DERs in
Scenario 4. With lower penetrations of DERs, the difference between these
three tariffs is higher, and Er even slightly reduces the total shifted energy
compared to the base case in Scenario 1. However, with increasing DER
penetrations, the effects of these three tariffs align.

Summarising, purely energy-based tariffs can give good incentives at low
DER penetrations but lead to high load peaks at high DER penetrations,
increasing geographic and temporal flexibility needs. The results imply
that longer periods with the same price and varying price time series
for different consumers can partly reduce the increase of flexibility needs
caused by time-varying energy-based cost components. However, there is
still a significant increase of flexibility needs in the scenarios with high DER
penetrations. Pure time-varying energy-based tariffs should therefore be
avoided in this case.
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Figure 17.10: Residual load of residential consumers for representative load-
dominated grid in the week of high residual load (left) and for
representative PV-dominated grid in the week of low residual load
(right). The time series are displayed for the capacity load tariffs in
a scenario of low (top) and high DER penetration (bottom).

Load Capacity Component

Fig. 17.10 shows residential consumers’ residual load, including their PV-
generation and flexibility options for both grids when applying a capacity
component on the load. The results are displayed for a peak component on
the load (CL) and the segmented tariff (CSG). In the low DER penetration
scenario (top), the effects are small, but the load peaks are slightly reduced
in both grids.

The effects become more pronounced in the high DER penetration scenario
at high residual load (bottom left). While the pure capacity component
on peak load CL effectively reduces the peak, the segmented tariff CSG
additionally smoothens the time series in the remaining times, filling the
valleys in the early morning. This effect can be explained by the additional
incentive given by the three segments. Consumers will shift their flexible
demand into times of low inflexible demand to benefit from the lower
prices of the cheapest segment. However, the peak reduction is lower for
the segmented tariff than for the peak load tariff. The reason is that load
reduction is only economically attractive when the consumer can reduce
the load to the extent that it is billed with a cheaper segment. If the peak is
too high to achieve that, there is no incentive to reduce the load.
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Table 17.4: Geographic and temporal flexibility needs with capacity load tariffs
relative to flexibility needs in the base case.

Reinforcement costs [%] Shifted energy [%]
S1 S2 S3 S4 S1 S2 S3 S4

CL 9.5 75.0 94.4 96.6 100.0 99.7 99.9 100.0
CSG 67.2 91.0 96.4 97.2 100.5 101.2 100.3 99.8

In the PV-dominated grid in the week of low residual load (bottom right),
we see little effect of the capacity load tariffs. In these times, the feed-in
exceeds the demand, and no incentives are given to alter the feed-in of the
residential loads.

Table 17.4 summarises the effects of the capacity load tariffs on geographic
and temporal flexibility needs. The values are presented relative to the
flexibility needs in the base case (Ec) of the respective scenario. There is
nearly no difference in temporal flexibility needs with the capacity load
tariffs. Even though load peaks are reduced, the influence on the shifted
energy is small.

On the other hand, the effect on the geographic flexibility needs depends
on the DER penetration. In Scenario 1 with low DER penetration, the rein-
forcement costs can be significantly reduced, by 90.5 % with tariff CL and
by 32.8 % with the segmented tariff CSG. The higher reduction of reinforce-
ment costs by CL is in line with the stronger peak reduction observed in the
consumption profiles in Fig. 17.10. With increasing penetrations of DERs,
both the reduction potential and the difference between both capacity load
tariffs decrease. In Scenario 4 with 100 % DER penetration, the reduction
of both tariffs only amounts to 3.4 % and 2.8 %, which implies that a large
share of the remaining reinforcement needs are feed-in driven.

Summarising, pure capacity load tariffs can effectively reduce load-driven
grid reinforcement but have little influence on temporal flexibility needs.
The importance of this price component depends on whether distributed
PV or new loads such as EVs and HPs are the main driver of future grid
reinforcement costs.
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Figure 17.11: Residual load of residential consumers for representative load-
dominated grid in the week of high residual load (left) and for
representative PV-dominated grid in the week of low residual load
(right). The time series are displayed for tariffs including a capacity
feed-in price component in a scenario of low (top) and high DER
penetration (bottom).

Feed-in Capacity Component

In case of high shares of distributed PV, an additional feed-in capacity
component can reduce feed-in peaks. Fig. 17.11 shows the residual load of
residential loads, including their PV-generation and flexibility options, in
the week of high residual load for a representative load-dominated grid (left)
and in the week of low residual load for a representative PV-dominated
grid (right). The time series are displayed for the pure capacity-based tariff
comprising peak prices on load and feed-in CLF and a combination of the
energy component based on the grid residual load and capacity component
on peak load and feed-in ErCLF.

In the load-dominated grid with low penetration of DERs (upper left), both
tariffs decrease the peak load. The combination of energy- and capacity-
based price components ErCLF proves to be more effective in smoothing the
load than the capacity components on their own in tariff CLF. The reason is
that, in addition to the incentive to decrease the highest occurring peak, the
energy price component based on the grid residual load gives incentives
to shift into times of low residual load, which seems to coincide well with
the residential load. In the scenario of high DER penetration (lower left),
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Table 17.5: Geographic and temporal flexibility needs with capacity feed-in tariffs
relative to flexibility needs in the base case.

Reinforcement costs [%] Shifted energy [%]
S1 S2 S3 S4 S1 S2 S3 S4

CLF 8.1 48.8 55.8 52.3 98.9 96.9 98.2 98.8
ErCLF 0.0 46.7 56.5 55.8 98.9 98.2 102.6 103.9

the time series of both tariffs differ significantly. The combined tariff ErCLF
shows higher fluctuations and shifts more load into the early morning
when the conventional load is low. The capacity-based peak components
prevent new high peaks caused by the energy-based component on its own
Er. With the combination of time-resolved energy-based and peak capacity
components, it is thus possible to give temporal incentives without causing
new peaks through synchronisation.

The difference between both tariffs is smaller in the PV-dominated grid in
the week of low residual load (right). Both significantly reduce the feed-in
peaks in the displayed scenarios.

Table 17.5 summarises the influences of the tariffs comprising capacity
components pricing peak load and feed-in on geographic and temporal
flexibility needs. The values are displayed relative to the flexibility needs
in the base case (Ec) in the respective scenario. With low penetrations of
DERs, both tariffs effectively reduce the geographic flexibility needs. The
pure tariff CLF reduces the reinforcement costs by 91.9 % in Scenario 1,
the combined tariff ErCLF even completely avoids grid reinforcements in
this case. With increasing penetrations of DERs, the reduction potential
decreases but stays relatively high at 47.7 % for CLF and 44.2 % for ErCLF in
Scenario 4 with 100 % DERs.

The effects on the temporal flexibility needs are smaller. The pure capacity-
based tariff CLF slightly reduces the temporal flexibility needs in all scenar-
ios. The combined tariff ErCLF, on the other hand, decreases the flexibility
needs for low to intermediate DER penetrations but increases the shifted en-
ergy for high DER penetrations up to 3.9 % in Scenario 4. This still signifies
a reduction compared to the pure energy-based tariff Er, which increases
the temporal flexibility needs by 9.8 %.
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Summarising, capacity price components on load and feed-in reduce the
geographic and temporal flexibility needs. They are especially effective in
reducing feed-in peaks and therefore gain importance with high shares of
distributed PV. Similar to the capacity tariffs on load only, synchronisation
effects caused by temporally resolved incentives at high DER penetrations
can be effectively prevented. Capacity price components on load and feed-in
should therefore be included for high DER penetrations.

Time-varying Suppliers‘ Cost

Time-varying suppliers‘ costs can be a means to forward market prices
to end consumers and thus give temporal incentives to consume at times
of high renewable feed-in. We therefore investigate the effect of tariffs
including time-varying suppliers‘ cost based on the residual load in a 100 %
VRES system in Germany. The resulting consumer time series are displayed
in Fig. 17.12. Generally, similar effects as for the time-varying energy-
based price components can be observed for tariff EcSr. However, this tariff
already increases load peaks for low penetrations of DERs (top). These
become more significant with increasing penetrations of DERs, especially
in the load-dominated grid in the week of high residual load (bottom left).
The new peaks occur around noon during high PV feed-in and at night
during low conventional load. An additional capacity component on peak
load and feed-in in tariff CLFSr effectively reduces both load and feed-in
peaks.

Table 17.6 summarises the influence of the tariffs with time-varying suppli-
ers‘ costs on geographic and temporal flexibility needs. These are displayed
relative to the flexibility needs in the base case (Ec) of the respective sce-
nario. The new peaks through synchronisation lead to a massive increase
in reinforcement costs for tariff EcSr in all investigated scenarios, with a
relative increase between 128.2 - 493.6 % compared to the base base. The
additional capacity price component on load and feed-in in CLFSr can
significantly reduce the costs. With low DER penetration, a reduction of
89.3 % compared to the base case can be achieved this way. With increasing
DER penetrations, the reduction decreases to 43.7 % in Scenario 4.

The temporal flexibility needs are reduced by 4.4 % with both tariffs in
Scenario 1 with low DER penetration. With increasing penetrations of DERs,
the two tariffs perform differently. The reduction decreases for EcSr with
high penetrations of DERs. With 100 % DERs in Scenario 4, there is even
a slight increase in temporal flexibility needs of 0.4 %. With a capacity
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Figure 17.12: Residual load of prosumers with time-varying suppliers‘ costs in
the week of high feed-in.

Table 17.6: Geographic and temporal flexibility needs with tariffs including time-
varying suppliers‘ costs relative to flexibility needs in the base case.

Reinforcement costs [%] Shifted energy [%]
S1 S2 S3 S4 S1 S2 S3 S4

EcSr 593.6 228.2 352.4 354.9 95.6 92.2 98.6 100.4
CLFSr 10.7 50.6 57.1 56.3 95.6 86.1 86.8 87.8
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Figure 17.13: National residual load in week of high load with time-varying
suppliers‘ costs compared to the reference tariff Ec in Scenario 4.

price component on both load and feed-in in CLFSr, on the other hand, the
reduction of temporal flexibility needs is higher with high DER penetrations
than in Scenario 1 with low DER penetration, amounting to 12.2 % in Scenario
4 with 100 % DERs. Tariff CLFSr thus proves to be the most effective in
reducing both geographic and temporal flexibility needs.

The decreasing performance for EcSr with high penetrations of DERs can
be explained by overshooting, which is showcased in Fig. 17.13. If DER
penetrations and their flexibility are high, reacting to predefined price time
series can lead to load peaks exceeding the excess feed-in (that caused the
low prices), possibly resulting in new high load periods. Similarly, if too
much feed-in is shifted into times of originally high load, it can create new
times of excess feed-in, which then has to be stored and shifted to later
times.

With peak prices on both load and feed-in in tariff CLFSr, the overshooting
can be reduced, and reduction potentials stay high also with high penetra-
tions of DERs. However, Fig. 17.13 shows that situations still occur where
the consumer reaction overcompensates the original imbalance. Therefore,
the DERs still do not unfold their full potential to reduce temporal flexibil-
ity needs, even with the most effective tariff CLFSr. Therefore, it might be
worth to consider including decentralised flexibility directly in the market
in these situations with high flexibility since they can influence the residual
load significantly and should consequently not act as price takers.

Summarising, time-varying suppliers‘ costs can reduce the temporal flexi-
bility needs at low DER penetrations, but significantly increase geographic
flexibility needs. At high DER penetrations, overshooting leads to an in-
crease in temporal flexibility needs as well. Capacity-based price compo-



17.3 results and discussion 285

nents can counteract this effect, but overshooting still occurs. For high DER
penetrations, direct integration of decentralised flexibility to the market
might therefore be preferable to a fixed price time series.

17.3.3 Geographic Flexibility Needs

In the following, we present and discuss the influence of different tariff
options on the geographic flexibility needs in the distribution grids, mea-
sured by the required distribution grid reinforcement and resulting costs.
Fig. 17.14 shows the total grid reinforcement costs for the different tariffs
and scenarios summed over the six distribution grids and divided into the
different voltage levels.

The absolute grid reinforcement costs vary with the investigated tariffs
and penetration of DERs. In Scenario 1 with low penetrations of DERs, the
reinforcement costs are low, and the differences between the network tariffs
are small. Only the time-varying suppliers’ cost in EcSr lead to a significant
increase in reinforcement costs. Tariffs CL, CLF, ErCLF and CLFSr can nearly
completely avoid reinforcement needs. On the other hand, the results differ
significantly in the other scenarios with higher penetrations of DERs and
the total reinforcement costs increase significantly. The total costs in the
base case (Ec) increase from 0.7 Mio. € in Scenario 1 to 15.7 Mio. €, 26.5 Mio. €
and 28.7 Mio. € in the other three scenarios. With 100 % DER penetration
in Scenario 4, the prices between all investigated scenarios range between
15.0 Mio. € with tariff CLF and 103.8 Mio. € with tariff Er−mv.

In all investigated scenarios, there is a high share of the reinforcement
costs in the LV. In the base case of Scenario 4, 86 % of the costs occur in
the LV, 13 % for MV/LV-transformers and 1 % in the MV within all six
grids. The reduction potential with capacity-based tariffs thus mainly lies
in the LV. With increasing costs for other tariffs, the share of costs in the
higher grid levels increases, reaching up to 32 % of costs in the MV and
21 % for MV/LV-transformers with tariff EcSr in Scenario 4. The previously
mentioned difference in reinforcement costs for tariffs Er and Er−mv in
Scenario 3 mainly stems from the MV, supporting the hypothesis that the
different price time series in Er limit the synchronisation of loads to a
certain extent.
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Figure 17.14: Grid reinforcement costs in investigated grids and scenarios with
different tariff structures.

17.3.4 Temporal Flexibility Needs

Next, we investigate the influence of the different tariff options on the
temporal flexibility needs of a fully renewable German energy system
powered by PV and wind only. Fig. 17.15 displays the temporal flexibility
needs in terms of energy shifting on different time scales for the investigated
tariffs and scenarios for entire Germany. Again, the difference is small in
Scenario 1 with low penetrations of DERs, ranging from -4.4 % for EcSr and
CLFSr to 1.5 % for tariff Ed/n. Negative values thereby indicate a reduction,
and positive values indicate an increase in total shifted energy. Changes
mainly occur in short-term shifting and, to a small extent, in medium-term
shifting. The long-term flexibility needs remain constant over all simulated
tariffs and scenarios. The differences between the tariffs increase with
growing shares of DERs. In the extreme Scenario 4, where all residential
loads are equipped with all investigated DERs, the change in total shifted
energy compared to the base case ranges between -12.2 % for tariff CLFSr
and 10.9 % for Ed/n.

The total shifted energy increases with increasing penetrations of DERs,
from 143.4 TWh in Scenario 1 to 164.5 TWh, 184.1 TWh and 189.3 TWh in
Scenarios 2 to 4, which can be explained by the additional load by EVs and
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Figure 17.15: Storage equivalents in investigated grids and scenarios with differ-
ent tariff structures.

HPs and additional PV feed-in which needs to be shifted. Furthermore,
the share of energy shifted long-term increases between the scenarios. This
effect can be explained by the increasing shares of HPs, which lead to
additional long-term shifting with the current mix of PV and wind (see
Section 13.3.2). The reduction potential being mainly in the short-term
shifting is in line with the previous investigations where DFO could only
significantly reduce medium-term shifting when shifting between standing
times was allowed for EV charging (see Section 13.3), which is not the case
in the given setup.

17.3.5 Implications for Consumer Costs

Lastly, we want to showcase the effects of the investigated electricity tariffs
on costs paid by the different consumer groups. In the following, we
therefore investigate the network tariff costs and the suppliers‘ cost paid
by the different consumer groups in the four scenarios with increasing
penetrations of DERs. The results show that the total costs paid by all
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Figure 17.16: Network tariff costs paid by different consumer groups in the
simulated scenarios.

consumers and the division of costs covered by the different consumer
groups differ between the investigated tariff options and scenarios.

Network Tariff Costs

We first focus on the costs for the network tariffs in Fig. 17.16. In Scenario 1
(upper left), a large share of the network tariff costs is paid by inflexible
households (HH), which are also the largest group in this scenario with
73 % of all residential consumers (see Fig. 17.3). For all tariffs, the inflexible
consumers pay less relative to their group share, covering between 66.5 %
and 71.2 % of the total network tariff costs. Even though the tariffs are
designed in a way that the inflexible customers should pay the same, the
costs for this group are lower for the tariffs based on the grid residual
load Er and Er−mv. The reason is that the costs were scaled individually for
each cluster, accounting for all simulated consumers. In the scenarios, the
consumers are assigned to different clusters, which does not necessarily
result in the same distribution of customer profiles for each cluster and
thus leads to the observed deviations. In reality, the tariffs would need to
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be scaled to recover the costs in any case. As tariffs Er and Er−mv lead to
relatively high reinforcement needs, inflexible consumers would also have
to pay more to cover these costs than with other tariffs that lead to lower
reinforcement needs.

In Scenario 1 and Scenario 2, the tariffs with time-varying energy-based tariff
components lead to a reduction of total network tariff costs paid by the
consumers compared to the base case of the constant energy-based tariff
Ec. On the other hand, capacity-based tariffs lead to an increase in total
paid costs. With higher flexibility in Scenario 3 and Scenario 4, the total
paid costs also slightly decrease for the capacity-based tariffs except for the
segmented tariff CSG, which still leads to a significant increase in total paid
tariff costs. The cost reduction is still higher for the time-varying energy-
based tariffs than capacity-based ones, implying that flexible consumers
can better optimise against the simulated energy-based tariffs than the
capacity-based ones. These trends are exactly opposite to the influence of
the tariffs on the grid reinforcement costs, which would have to be covered
by the paid network tariffs. Capacity-based tariffs lead to a reduction, while
energy-based tariffs lead to an increase in the grid reinforcement costs. The
resulting costs for inflexible consumers would therefore increase for the
time-varying energy-based tariffs and decrease for tariffs with capacity-
based components. This customer group is specifically interesting since
they do not contribute to increasing grid reinforcement costs. They should
therefore not be burdened excessively with any of the tariffs, which could
be the case for time-varying energy-based tariffs.

The higher paid costs for the segmented tariff CSG are mainly caused
by the deployment of HPs. These lead to higher consumption, especially
in winter when less PV generation occurs for self-consumption. In these
times, reducing the total household consumption to the cheaper segments
is often impossible, causing higher total costs. This tariff should therefore
be adapted in future investigations to maintain accurate incentives for
consumer groups owning HPs. A seasonal variation could thereby also be
considered.

The effects of the tariffs on the different consumer groups are best visible
in Scenario 2, where all consumer groups are equally large (see Fig. 17.3).
Differences in costs paid by the consumer groups in Fig. 17.16 (upper
right) can therefore be directly attributed to the tariffs. One effect is that
consumers owning PV and BESS (also in combination with other DERs)
pay significantly less than the other groups with all the simulated tariffs.
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Other effects are higher costs for the group of EV owners with the capacity
price component on load, and higher costs for the group of HP owners
under the segmented tariff.

The simulated consumers and DERs display different consumption profiles,
and the observed effects might not be homogeneous for the whole group.
Furthermore, in the future, consumers might choose between different tariff
options. Therefore, we investigate which share of the simulated pool of
consumers would choose which tariff option, assuming an economically ra-
tional choice. Figure 17.17 displays the share of the 500 simulated consumer
profiles that would choose a certain tariff option with the investigated
tariff designs (excluding the variations with time-varying suppliers‘ costs
since the focus is on the network tariff price component). The values are
displayed for inflexible households (HH) and households equipped with
different combinations of DERs.

While inflexible consumers (HH) are divided between the residual load
based energy tariff Er, the segmented tariff CSG, the capacity tariff on peak
load CL and a small share of the constant energy-based tariff Ec, most
combinations with DERs show only one or two predominantly chosen
tariff options. One reason is that the tariffs are designed so that inflexible
consumers (HH) pay the same. If equipped with one or more DERs, their
characteristics change, making certain tariff options more attractive than
others. For example, EVs show a relatively high peak-to-energy ratio, thus
leading to the preferred choice of an energy-based tariff Er. On the other
side, HPs have comparably low peak-to-energy-ratio, leading to a strong
preference towards the capacity-based tariff on load peaks CL. With the
combination of both (EV & HP), the economical choice seems to depend
on the sizing of both technologies with similarly large shares choosing
the energy-based tariff Er and the capacity-based tariff on peak load CL.
Additionally, a smaller share prefers the day and night tariff Ed/n.

Households only equipped with a PV system (without BESS) largely prefer
the segmented tariff CSG with two-thirds of the households. The remaining
third chooses the day and night tariff Ed/n. PV produces electricity during
the day, thereby naturally reducing daytime demand, which causes higher
costs for the day and night tariff. Similarly, for residential loads, the con-
sumption is usually higher during the day, causing higher costs for the
segmented tariff, which PV can effectively reduce. The day and night tariff
seems to become more attractive for the combination of different DERs.
This effect implies that even when given the choice between different tariff
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Figure 17.17: Share of economically optimal network tariffs for simulated 500

customers equipped with different combinations of DERs. For
clarity, shares of ≤ 1 % are not displayed.

options, consumers of the same type might choose a similar tariff. With
the day and night tariff, a tariff is preferred for high penetrations of DERs
that increases both geographic and temporal flexibility needs (see Table
17.3).

Naturally, the economical choice of a network tariff depends on the specific
configuration and price values chosen for the different tariffs. In our study,
they are chosen so that, over all 500 simulated consumers, the mean costs
for inflexible consumers are constant. The observed tendencies therefore
only apply in this case. If consumers with DERs were given different
tariff options than inflexible consumers, the observed effects are no longer
valid. However, we would argue that DSOs will try to offer the same
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Figure 17.18: Suppliers‘ cost paid by different consumer groups in the simulated
scenarios.

tariff to consumers. Therefore, the discussed results still show interesting
tendencies and highlight the risk that consumers with similar characteristics
tend to choose the same tariff option, which might lead to synchronised
consumption behaviour.

Suppliers‘ Costs

For suppliers‘ cost in Fig. 17.18, only the constant energy-based tariff Ec and
the tariffs with time-varying suppliers‘ cost are displayed since the results
of the other investigated tariffs largely resemble the ones of tariff Ec. The
results show that owners of PV systems with BESS partly show negative
values. This means that they produce more electricity than they consume,
selling the excess electricity and thus displaying net revenues. It implies
that the PV systems are oversized for households without HPs. If these
are included, the suppliers‘ costs show positive values. With increasing
penetrations of DERs in the different scenarios, the total suppliers‘ cost
paid by the consumers decreases even though the electricity consumption
by EVs and HPs increases. At the same time, PV deployment increases,
leading to higher self-consumption and, thus, less electricity drawn from
the grid. With time-varying suppliers‘ costs, flexible consumers generally
seem to pay less since they optimise for low prices.

Lastly, we investigate the economically rational choice of electricity tariffs
including the investigated network tariffs and suppliers’ cost in Fig. 17.19.
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Figure 17.19: Share of economically optimal electricity tariffs for simulated 500

customers equipped with different combinations of DERs. For
clarity, shares of ≤ 1 % are not displayed.

The results show that for most investigated groups, a certain share of the
simulated 500 consumers prefers the electricity tariffs with time-varying
suppliers‘ costs EcSr and CLFSr. Exceptions are groups that own a PV-
system without BESS (PV, EV & PV, HP & PV, EV & HP & PV), for which
either no consumers choose these tariffs or a very small share ≤ 2 %. The
tendency is that the consumers that would choose the capacity-based tariff
on peak load as a network tariff (see Fig. 17.17) switch to the combination of
time-varying suppliers‘ costs and capacity network tariff on peak load and
feed-in CLFSr. For example, tariff CLFSr is the cheapest option for almost
the entire group of HP owners. This effect implies that the time-varying
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suppliers’ cost is more attractive than the constant cost with the same mean
value. When HP owners additionally own a PV system without BESS, they
stick with the capacity-based network tariff on load peaks with constant
suppliers’ costs CL. The reason is that the PV remuneration also follows
the time-varying suppliers’ cost, and prices are lower in times of high PV
feed-in. The losses of PV revenues thus seem to be higher than the savings
potential by lower costs for consumption. For consumers owning PV with
BESS, the largely preferred option is still the day and night tariff with
constant suppliers‘ costs Ed/n with ≥ 70 % for all these groups. However, it
has to be mentioned that we did not consider combinations of time-varying
energy-based network tariffs and suppliers’ costs. It can be assumed that in
this case, consumers opting for Ed/n would change to Ed/nSr.

17.3.6 Limitations and Future Research

While we cover a wide range of tariffs and investigate various aspects of
electricity tariffs and their effects on consumption profiles, we use simplify-
ing assumptions that might impact the results. In the following, we want to
discuss these and provide areas for future research.

In our model formulation, late EV charging is penalised to mimic the
range anxiety of EV owners. This formulation might overestimate the
synchronisation of EV charging and lead to excessively high peaks. The
height of the peaks highly depends on the user preference represented by
the penalty term penev and the length of the low-price period. The longer
the times of low prices and the lower the user’s discomfort in charging later,
the less pronounced the synchronisation effect will be. Similarly, all HPs
of the same technology share the same COP time series and have a similar
heat demand in our investigations. These result in similar consumption
profiles and peaks at high COP values and low prices. In reality, the heat
demand would differ, and simultaneities might be lower. Nevertheless,
the synchronisation of flexible demand with time-varying prices poses
a realistic threat of increased stress on the grid and has been reported
and discussed in various previous studies and trials (e.g. [227]–[229]). The
underlying trends of our results are therefore still valid, even though the
increase in peak load and grid reinforcement might be overestimated.

On the other hand, the observed synchronisation effects will likely increase
with increasing flexibility, e.g. by allowing vehicle-to-grid (V2G). To estimate
the effects of network tariffs in real-world applications, it is therefore
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crucial to determine the willingness of users to adapt their behaviour.
Digitisation and the widespread use of intelligent EMSs, as we assume
in our study, will likely increase the willingness to participate in such
schemes. A situation where the penetration of flexibility options is still low
in the distribution grids (DGs) would offer the opportunity to learn about
consumers’ reactions to different incentive schemes without risking severe
negative effects from undesired synchronisation. Field trials evaluating
the effects of the investigated tariff options in a real-world setting would
therefore be an interesting extension of this work.

Furthermore, we model the extreme cases where all consumers adopt the
same tariff. While this is an interesting edge case to estimate the maxi-
mum effect of different electricity tariffs, it is unrealistic. In the real world,
consumers can choose between different tariff options, resulting in a diver-
sification of consumer responses. It was shown that the free choice between
different dynamic (energy-based) electricity tariffs lead to a release of stress
in a LV distribution grid [230]. However, only an intermediate penetration
of DERs was modelled, and our results imply that with increasing flexibility,
the rational choice of electricity tariff might be similar for a large share of
the flexible consumers. The effect of mixed tariff choices should therefore
be further examined in future investigations.

We do not account for a mix of time-varying suppliers’ costs and time-
varying energy-based network tariffs in the investigated electricity tariffs. It
was shown that the positive effects of different network tariffs were reduced
when consumers were reacting to spot prices and that energy-based network
tariffs were influenced more than capacity-based charges [231]. We therefore
do not expect such tariffs to perform well. Similarly, we did not account for
critical peak pricing. In a recent study, this design was shown to have little
effect [232], stressing the complexity of setting incentives right with this
approach. It would nevertheless be interesting to expand the investigation
on this concept as it is widely discussed. Furthermore, the grid-based energy
charges could be improved. The investigated number of clusters was too
low to adequately reflect the situation in the LV grids. Higher differentiation
might improve the effect of this price component, and a combination with
capacity charges might further decrease the necessary reinforcement and
smoothen the system’s residual load. Similarly, the segmented tariff was not
adjusted to increasing load with EVs and HPs, which is why this tariff did
not perform well for high DER penetrations. Furthermore, the segmented
tariff could be expanded to also apply to local PV feed-in, giving incentives
to smooth the feed-in in additional to the load.
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The efficacy of capacity-based price components on load and feed-in to
reduce grid reinforcement costs proved to be dependent on whether load or
feed-in peaks are the main driver for grid reinforcement. In the investigated
scenarios, all DERs were adopted at the same rate. In future investigations,
it would be interesting to vary the rates between EVs, HPs, PV and BESS
to get a better understanding of the interplay of of the tariff options with
the different DERs and their uptake.

Lastly, we do not account for costs associated with using flexibility. While it
can be argued that the marginal costs for flexibility utilisation are low, the
investment costs for the EMS would have to be recovered by the cost savings
achieved by flexibility procurement. In a recent study, it was shown that a
majority of users opted for the investment in an EMS with most tariffs [232].
However, not all investigated tariffs were covered in that study. So, in future
investigations, the influence of the tariffs on investment decisions on EMSs
and DERs could be included.

17.4 conclusion

We investigated the influence of different electricity tariff components on
the consumption behaviour of prosumers and resulting geographic and
temporal flexibility needs by applying these to six differently composed
grids. The geographic flexibility needs were determined regarding the
required distribution grid reinforcement and the resulting costs. Temporal
flexibility needs were measured by required energy shifting in a fully
renewable German power system. Prosumers with different combinations
of PV-systems, BESS, EVs and HPs were modelled by a cost-minimising
optimisation to model their reaction to the investigated tariffs. Flexibility
options available to them were PV curtailment, BESS and smart operation
of EVs and HPs.

Our results show that using the modelled flexibility options decreases the
need for grid reinforcement if network tariffs are set efficiently. However,
network tariffs can also have the opposite effect. Time-varying energy-based
tariffs led to a synchronisation effect, drastically increasing grid reinforce-
ment costs in scenarios with high DER penetrations. On the other hand, a
capacity charge on peak load encourages consumers to decrease their peak
loads, and thus, the grid-straining peaks are reduced. This price compo-
nent can also effectively counteract the synchronisation effects observed
for time-varying energy-based prices. With increasing penetrations of de-
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centralised PV, capacity components on peak feed-in become increasingly
important. Together with a capacity component on load, they can reduce
the grid reinforcement costs by 47.7 % in the extreme scenario where every
household owns a PV system with BESS, HP and EV.

The temporal flexibility needs depend more on energy-based than on
capacity-based price components. On their own, the capacity-based price
components show little effect on the required energy shifting. The time-
varying energy-based price components depend on their design and the
penetration of DERs. If not aligned with the residual load, such prices
increase temporal flexibility needs. For low to intermediate penetrations
of DERs, prices based on the residual load can reduce the required energy
shifting. However, with high DER penetrations, there is an overshoot effect,
and the temporal flexibility needs increase. In this case, the peak load and
feed-in capacity components can positively counteract the high peaks. For
the scenario with the highest DER penetration, the combination of residual
load based suppliers‘ costs and capacity prices on peak load and feed-in
achieves the highest reduction of temporal flexibility needs with 12.2 %.
Overall, this tariff proved to be the most promising one, reducing both
temporal and geographic flexibility needs.

Our investigations showed that incentives given by electricity tariffs can
reduce geographic and temporal flexibility needs and thus contribute to
their supply. However, purely energy-based tariffs with temporally resolved
incentives bear the danger of high new peaks and thus increase flexibil-
ity needs, especially at high DER penetrations. Therefore, we recommend
including capacity-based price components in future electricity tariffs to
counteract these effects. In future investigations, the effects of consumers
choosing different tariff options should be included since that might re-
duce the simultaneity and, thus, newly created peaks. Furthermore, our
results imply that with increasing flexibility, it might be beneficial that
end customers directly participate in the market instead of acting as price
takers. The interplay of concepts allowing this, e.g. through aggregators,
with different price components would be an interesting path for future
research. Lastly, the choice for a good electricity tariff depends not only
on their effects on geographic and temporal flexibility needs but also on
various other factors, e.g. fairness aspects. In the next chapter, we therefore
develop and apply an evaluation framework for tariffs, where such other
goals are also included in the final decision.
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The content of this chapter is based on the published paper: A. Heider, J. Huber, Y.
Farhat, Y. Hertig and G. Hug, "How to choose a suitable network tariff? - Evaluat-
ing network tariffs under increasing integration of distributed energy resources",
Energy Policy, Vol. 188, 2024, DOI: 10.1016/j.enpol.2024.114050 [233].
©2024 The Authors. Published by Elsevier Ltd.

The interviews, criteria identification and weighting were conducted by Jill Huber
in her master thesis [234] that was supervised during this PhD research. For
completeness, the interviews, criteria identification and weighting are still included
in the following chapter but were not the contribution of the author. The original
case study is replaced with more realistic input data from the previous chapter,
investigating more complex tariffs, including flexibility from heat pumps and
electric vehicles and providing data for individual consumers instead of customer
groups.

In a changing power system with increasing penetrations of distributed
energy resources, traditional network tariffs might not be able to meet the
underlying requirements. Therefore, it is necessary to assess suitable alter-
natives. We propose a new two-stage process and evaluation framework
to support an informed decision process and test them in a Swiss envi-
ronment. In the first stage, stakeholder interviews determine the relevant
design criteria. In the second step, these are translated into a quantitative
evaluation framework. The single indicators are weighted by expert weight-
ing, following the analytic hierarchy process, to arrive at the final ranking.
The application in a case study shows that the final ranking of the exam-
ined tariff structures depends on expert weighting. It is therefore vital to
work on a shared understanding of the importance of the different criteria.
Moreover, in a scenario with high shares of distributed energy resources,
tariffs including capacity-based price components on average outperform
the standard volumetric tariff. This result stresses the importance of adapt-
ing network tariffs for a future power system with high penetrations of
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distributed energy sources. Our open-source evaluation tool1 can help with
an informed and transparent decision process.

The remainder of the chapter is structured as follows: Section 18.1 presents
the proposed two-stage process with the identification of relevant criteria
in Section 18.1.1 and the translation into a multi-criteria decision analysis
(MCDA) evaluation framework in Section 18.1.2. In Section 18.2, we apply
the proposed framework to a case study and present and discuss the results
in Section 18.3. Section 18.4 translates the findings into conclusions and
policy recommendations.

18.1 research design

Fig. 18.1 gives an overview over the two-stage process proposed in this
work. In the first step, the relevant criteria are extracted from stakeholder
interviews. In the second step, we define quantitative evaluation indices
for the extracted criteria in an iterative process. In both stages, relevant
stakeholders are involved. As the second stage depends on the outcome
of the first stage, the results of stakeholder interviews are presented as
part of this section. All mathematical symbols relevant to this chapter are
summarised in Tab. B.3 and Tab. B.5 in the appendix.

Stakeholder
Interviews

Definition and 
Calculation of 
Indicators

Identified
Criteria

Ranking 
of Network 

Tariffs

Criteria Identification (qualitative) Evaluation Framework (quantitative)

Stakeholder 
Involvement

Process Outcome

Figure 18.1: Two-stage process to define evaluation framework for network tar-
iffs.

1 Available at: https://github.com/AnyaHe/EFf-NeTs

https://github.com/AnyaHe/EFf-NeTs
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18.1.1 Identification of Relevant Criteria

In the following, the first stage of the proposed process is introduced. The
first part describes the applied method of stakeholder interviews, followed
by a discussion of the extracted design criteria for network tariffs.

Stakeholder Interviews

As many different stakeholder groups are involved in the design of net-
work tariffs, capturing their different perspectives and objectives is crucial.
Therefore, we choose semi-structured interviews with representatives of
relevant stakeholder groups, which allows the interview partner to address
unexpectedly relevant topics [235]. Semi-structured interviews are charac-
terised by following an interview guide. The guide consists of questions
and topics to be addressed but leaves room to address further topics based
on the interviewee’s answers.

In our work, we conducted five online interviews with stakeholder repre-
sentatives from Swiss entities. The interviews were conducted in March
and April 2022, each lasting one hour. The interview guide consisted of the
following questions:

1. In your view, what is the task of network tariffs?

2. What incentives should be set with network tariffs? Is there any
prioritisation?

3. What conditions need to be considered when designing network
tariffs? What are the regulatory framework conditions for network
tariff design? How would you assess customer requirements?

4. To what extent are the conditions and requirements for network
tariffs changing under the increased integration of distributed energy
resources?

5. Are there differences between the requirements for tariffs for con-
sumers and (distributed) producers or storage systems?

To cover different aspects of the requirements of network tariffs, we choose
respectively one representative of each of the following stakeholder groups
as interview partners:

the authority defines all the legal requirements for the network tariff
design.
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politics gives input within this process of formulating network design
principles.

third party , analogue to politics, provides opinions and remarks in
defining legal requirements.

dsos are responsible for setting and eventually charging the network
tariffs.

the regulator is responsible for checking the costs charged by network
tariffs on their conformity with the legal requirements.

The stakeholder group of end consumers is not chosen as an interview
partner as we focus on stakeholders involved in the definition and imple-
mentation of new network tariff structures. Still, end consumers who pay
the network tariffs are an important group when it comes to the design of
network tariffs. Therefore, the motivation and needs of end consumers are
addressed in the interviews conducted with the other stakeholders.

After conducting the interviews, the relevant design criteria for network
tariffs must be extracted. Therefore, we transcribe, code and interpret
the interviews. Intelligent verbatim transcription is used, as presented by
Dresing and Pehl [236]. It is transcribed verbatim, but filler words, pauses or
stuttering are omitted or smoothed out. Dialects, such as different variations
of Swiss German, are translated into High German.

For coding and condensation, the statements of the interview partners are
categorised by assigning keywords to text segments [237]. The keywords
assigned to text segments consist of critical statements made by the inter-
view partners on evaluation criteria and network tariff structures, such
as “customer acceptance” or “cost reflection”. These coded transcripts are
then summarised following the lead questions of the interview guide. Each
summery includes a sketch of general conditions and objectives of network
tariffs mentioned by the interview partner. To ensure that the statements
are summarised correctly, the interview partners were asked to proofread
the interview summaries. Their feedback was then integrated into the final
summaries.

Last, the statements given in the interviews are interpreted to identify
relevant network tariff requirements. Interpreting the statements consists
of structuring the apparent meaning of what was said and a deeper and
applied interpretation concerning the research question [237]. The most
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Figure 18.2: Identified criteria through stakeholder interviews.

addressed and highlighted network tariff requirements are summarised
and defined from all statements.

Since five interviews might not be enough to capture the full variety of
perspectives in network tariff design, we compare the outcomes of the
interviews with previous literature in the field and current regulations.
Additionally, a preliminary framework of criteria obtained by a literature re-
view was discussed at the end of the interview process to converge towards
one coherent framework. Furthermore, this study mainly aims to prove the
applicability of the proposed process and showcase a possible application.
The developed framework should therefore be seen as a basis for further
development and refinement since the criteria and their importance can
also differ depending on the local application.

Identified Criteria

Figure 18.2 shows the most prominent network tariff requirements to
be considered as criteria in network tariff design, which result from the
interviews conducted with the representatives of the relevant stakeholders.
These criteria are described in more detail below. In addition to these criteria,
technical and regulatory feasibility are also relevant for implementing a
tariff structure. However, both are more prerequisites than design criteria
and therefore not included in the evaluation framework but considered in
the discussion of the results.

The representatives interviewed agreed that the main task of network tariffs
is covering the costs of the electricity grid. This is also generally stated in
the literature [201], [202]. Literature has proposed indicators to measure the
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expected deviation between costs and revenues [201], [202] as well as its
variance [202]. However, every tariff structure can be designed to recover
the costs by adjusting the price components. Over- and under-recoveries are
compensated and balanced out in subsequent years [238]. The fulfilment of
cost-recovery is thus assumed as an underlying condition for network tariff
design and not a decision criterion. However, the stability of income and
the influence of uncertainties in terms of costs and revenues can still differ
with the type of tariff. Depending on the size and cash flow availability of
the distribution system operator (DSO), it might become a relevant criterion.
This factor is not included in this work but could be added as an extension
in future work (e.g. as proposed in [202]).

Efficient Grid ( = Cost-Reflection)

While covering the costs incurred, network tariffs should provide incentives
for an efficient grid. All representatives of the different stakeholders agreed
that an efficient grid is to be achieved with the signals through network
tariffs, avoiding unnecessary costs and minimising the grid cost incurred.
Therefore, network tariffs should incentivise grid-supportive behaviour by
the end customers. To achieve this, the tariffs that end customers pay should
reflect the cost they impose on the system. According to all the stakeholders,
it is the most important criterion that network tariffs are cost-reflective.
Further, it is mandated by Swiss and EU law [239], [240] and thus taken
into account by various studies on network tariff design (e.g. [202], [241]).
Especially with the increased integration of distributed energy resources
(DERs), the reflection of the costs is of high relevance, as resources such as
electric vehicles (EVs), heat pumps (HPs) and photovoltaics (PV) systems
can cause large load peaks, driving the grid costs [241], [242].

The difficulty lies in establishing the cost contribution of a consumer [202].
The conducted interviews with the relevant stakeholders show that there
are differing opinions on how to design network tariffs in order to be cost-
reflective. While some state that tariffs should account for the costs imposed
on the system through aggregated load peaks and therefore real-time usage,
others state that tariffs should primarily reflect the fixed costs for providing
the available capacity at the grid connection point. The aggregated load
peaks are thereby relevant for the costs in the higher grid levels while the
contracted capacity is the main cost driver in lower grid levels. Therefore,
this criterion is divided into two sub-criteria, the reflection of usage-related
costs and the reflection of capacity-related costs. Both reflect long-term
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marginal costs, i.e. the costs for operating, maintaining and expanding the
network infrastructure. Other cost factors are short-term marginal costs,
like losses [202], and fixed costs. In the interviews, they were not seen as
relevant design criteria and the share of short-term marginal costs in the
overall costs is rather low [206], [243]. However, in the future, if electricity
costs are rising, these costs might increase and become a more relevant
factor. In this case, the short-term marginal costs could be included as an
additional criterion in future work.

Fairness and Customer Acceptance

From the interviews with the representatives of the stakeholders, it can be
noted that the fairness of network tariffs and their customer acceptance
are essential criteria that need to be taken into account when designing
network tariffs. Network tariffs should not favour or discriminate against
anyone. The understandability and comprehensibility of network tariffs
should be guaranteed for everyone, irrespective of their level of education
and expertise, one reason being that good comprehensibility of the tariff can
increase customer acceptance. Customers should also not be disadvantaged
because of their financial resources; therefore, network tariffs should be
affordable. Particularly with the trend towards the increased integration of
DERs, customer groups with assets to meet their own electricity demand
are growing, enabling them to optimise their consumption from the grid
and thus save on grid costs. Network tariffs should consider that people
who do not have these possibilities due to their living situation or financial
resources are not disadvantaged.

Fairness and customer acceptance were mentioned in relation to each other
in the interviews. Similar to the criterion of an efficient grid, they could also
be further divided into two different sub-criteria. However, both factors
are highly interconnected and influence each other. It has been shown that
policies are more accepted if they are perceived to be fair [244], [245] and
that fairness is an important factor in public engagement [245]. With the
criterion, we mainly want to measure how likely customers are going to
participate in a new tariff scheme. For these reasons, fairness and customer
acceptance are defined as a single criterion in the following.

Again, this criterion is mandated by the Swiss and EU law [239], [240] and
widely discussed in the literature. It is immensely subjective and difficult
to quantify. Nevertheless, also in the literature, it is generally agreed that
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fairness and customer acceptance are relevant criteria for the design of
network tariffs [201], [241], [242].

Consistency with Political Objectives

From the interviews, network tariffs should be consistent with political
energy objectives. While they do not have to facilitate these political ob-
jectives, they should also not hinder them. In addition to the phase-out
of nuclear energy, the expansion of renewable energies and the increase
in energy efficiency are the most important measures of the Swiss Energy
Strategy 2050 [246], approved by the Swiss population in 2017. Energy
efficiency includes not only the reduction of energy consumption but also
the electrification of the heating and transport sectors and thus an increase
in DERs such as heat pumps and residential batteries.

Article 14, paragraph 3 and letter e of the Electricity Supply Act states
that “network tariffs must take into account the objective of efficient [...] use
of electricity” [239]. Furthermore, the Electricity Supply Ordinance stipu-
lates the corresponding implementation with the aid of a non-degressive
volumetric component (in Rp./kWh) of at least 70 % of the total network
tariff costs [247]. The regulatory framework for network tariffs shows that,
already nowadays, political objectives are taken into consideration within
the design of network tariffs. Therefore, we define consistency with political
energy objectives as a relevant criterion for network tariff design. A distinc-
tion is made between two sub-criteria when it comes to political objectives:
the expansion of DERs, such as PV systems, heat pumps and batteries, and
the efficient use of electricity.

18.1.2 Evaluation of Network Tariff Structures

In the first stage, we determined relevant design criteria for network tariffs.
To find the most suitable tariff option based on these criteria, we trans-
late them into a coherent evaluation framework. For this, we propose the
use of a MCDA based on the weighted sum method [219]. The proposed
framework thereby combines weights determined with the analytic hier-
archy process (AHP) [248] with newly defined performance indicators.
Overall, the proposed MCDA is inspired by the AHP, which is based on a
linear hierarchical structure of the problem, including criteria, sub-criteria
and alternatives. Fig. 18.3 shows the hierarchical structure of the proposed
framework. In contrast to the AHP, the lowest level of the hierarchy is
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Figure 18.3: Hierarchical structure of the evaluation of network tariff structures
as basis for the MCDA.

replaced with quantitative performance indicators instead of pairwise com-
parisons.

The criteria of an efficient grid (EG), fairness and customer acceptance
(FAC) and consistency with political goals (PO) are treated as independent
criteria. For the efficient grid, the sub-criteria for the reduction of usage-
and capacity-related costs are defined as sub-criteria but integrated into
the criterion of an efficient grid EG as both are closely related. For the
criterion of consistency with political goals (PO), on the other hand, the sub-
criteria for the expansion of DERs (EDER) and efficient use of electricity
(EEU) are independent of each other and therefore treated as separate
sub-criteria.

To conduct the overall ranking INT of the tariff structures, the weights
and performance indicators towards all evaluation criteria EC = {EG, FAC,
EDER, EEU} are combined according to:

INT = ∑
i∈EC

Wi ∗ Ii
NT , (18.1)
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where Wi is the importance of criterion i on the first level of the hierarchy
and Ii

NT is the alternative’s performance towards the criterion i on the
second level of the hierarchy. The higher the overall importance INT , the
higher the tariff structure NT in the final ranking.

Level I: Weighting of Criteria

The weighting of the criteria is used to indicate the importance of the
respective criterion to the overarching goal, in this case, the evaluation
of network tariffs. Since there are no quantitative measurements of the
criteria’s importance regarding the overall goal, their priorities are assessed
with the help of subjective judgements of experts [249]. First, a pairwise
comparison matrix denoting the relative importance of the criteria relative
to each other is constructed [248]. To then analyse the pairwise comparisons
and determine the importance of each element at each level of the hierar-
chy, the AHP suggests using the eigenvalue method [248]. Filling out an
entire matrix of pairwise comparisons can improve the validity of people’s
judgements that tend to be inconsistent [250]. Applying the eigenvalue
method therefore encourages consistency, and we additionally calculate a
consistency ratio (CR) that guarantees a certain consistency of the expert’s
judgement [251].

Similar to the main criteria, there is also no quantitative measurement
for the relative importance of the sub-criteria of consistency with political
objectives. We therefore propose to fill out two pairwise comparison ma-
trices for the comparison of the main criteria (efficient grid, fairness and
customer acceptance, consistency with political objectives) and sub-criteria
of consistency with political objectives (expansion of DER, efficient use of
electricity). An example of the pairwise comparison matrices filled out by
the DSO representative can be found in Tab. 18.1 and 18.2.

The weights of the sub-criteria of expansion of DERs WEDER and efficient
electricity usage WEEU are calculated by multiplying the weight of the main
criterion of consistency with political objectives PO with the weights of the
sub-criteria:

Wj = WPO · W ′
j ∀j ∈ {EDER, EEU}. (18.2)

The AHP enables the decision maker to combine subjective opinions and the
quantitative assessment of criteria [249]. For the sub-criteria of an efficient
grid, we choose the quantitative approach since the relative importance can
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Table 18.1: Pairwise comparison matrix of the main criteria with respect to the
goal based on the judgement of the DSO’s representative, where
CR = 0.077

Incentives
for Efficient

Grid

Fairness and
Customer

Accept.

Consistency
with Polit.
Objectives

Importances
Wi

Incentives
for Efficient
Grid

1 7 9 0.79

Fairness and
Customer
Accept.

1/7 1 3 0.15

Consistency
with Polit.
Objectives

1/9 1/3 1 0.07

Table 18.2: Pairwise comparison matrix for the sub-criteria with respect to consis-
tency with political objectives based on the judgement of the DSO’s
representative.

Expansion
of DER

Eff. Electri-
city Usage

Importances
W ′

i

Global
Importances

Wi

Expansion
of DER

1 1 0.50 0.03

Eff. Electri-
city Usage

1 1 0.50 0.03



310 evaluation of tariff designs

Table 18.3: Overview of the criteria indicators.

Criterion Sub-criterion Indicator

Efficient Grid

Reduction of
Costs

• Reduction of Usage-Related Costs (UCR)
• Reduction of Capacity-Related Costs (CCR)

Reflection of
Costs

• Reflection of Cost Drivers in Costs (ROC)

Fairness and Customer
Acceptance

• Cost Change for Inflex. Consumers (IFAC)

Consistency
with Political
Objectives

Expansion of
DERs

• Cost Change for DER Owners (IEDER)

Efficient Elec-
tricity Usage

• Reduction in Shifted Energy (SER)
• Reflection of Electricity Usage in Costs (ROE)

be measured by the share of usage-related cUR
NT and capacity-related costs

cUR
NT within the overall costs CNT :

W ′
ROUR =

CUR
NT

CNT
= cUR

NT ; W ′
ROCR =

CCR
NT

CNT
= cUR

NT , (18.3)

where CUR
NT and CCR

NT are the absolute usage-related and capacity related
costs. Note that the assumption here is that the overall costs only consist of
usage- and capacity-related costs.

The weights of all main criteria and the sub-criteria SC of a single criterion
need to sum up to 1:

∑
i∈EC

Wi = 1; ∑
j∈SC

W ′
j = 1. (18.4)

Level II: Performance Indicators

In the second level, we develop performance indicators for the criteria
fulfilment by different network tariff structures. Each criterion or sub-
criterion is associated with one or two indicators. Tab. 18.3 gives an overview
of the proposed indicators, further detailed below.
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The indicators can be divided into two groups: indicators measuring the
correlation between a specific aspect and the paid costs and indicators
measuring the reduction of a parameter. The structure and obtainable
values are the same for all indicators of the same group.

The first group consists of the reflection of costs drivers in costs (ROC)
and the reflection of electricity usage in costs (ROE). For both, we use
the Pearson correlation between tariff costs and costs incurred by the
customer or electricity consumption of the consumer, and the slope of a
linear regression function as proposed in [202]. The Pearson correlation
takes values between -1 and 1. The absolute value thereby indicates the
strength of the correlation and the algebraic sign whether the parameters
are positively or negatively correlated. The slope indicator takes values
between 0 and 1. The final indicators, which are the product of Pearson
correlation and slope, therefore also range between -1 and 1. Generally, we
expect a positive correlation. Therefore values between 0 and 1 are more
realistic.

The remaining indicators form the second group. For them, the reduction of
a certain parameter compared to a reference value is measured. The general
structure of the indicators is thereby:

INT = 1.5 − XNT
Xre f

, (18.5)

where XNT is the parameter value under tariff NT and Xre f the reference
value. The parameter is designed such that the indicator obtains a value
of INT = 0.5 if XNT = Xre f since this is the middle of the expected range
of the first indicator group. The maximum possible value is INT = 1.5 for
the case where the parameter is reduced to XNT = 0, which is however
unrealistic. If the parameter value is higher than the reference value, the
indicator value is INT < 0.5 and can obtain negative values if XNT is more
than 50 % higher than the reference value.

Efficient Grid

The goal of an efficient grid is to reduce unnecessary costs. We therefore
propose the reduction of costs achieved by a network tariff NT as an
indicator for an efficient grid. It can be further subdivided into the reduction
of usage-related costs UCRNT and capacity-related costs CCRNT . Usage-
related costs thereby reflect the long-term marginal costs that are influenced
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by how and when a consumer draws electricity from the grid. The capacity-
related costs, on the contrary, do not depend on the time of use but only on
the amount of contracted capacity. These costs are prevalent in the lower
grid levels, as grid operators have to account for high simultaneities and
therefore plan with the full contracted capacity of a user. In higher grid
levels, on the other hand, a higher number of consumers allows to use
lower simultaneity factors and plan with the aggregated peak of a larger
group of consumers instead. Since an actual calculation of the costs might
be difficult, we propose proxies for both values as well.

If cost-driving factors are reflected well in the tariff, and customers are
price responsive, customer behaviour is expected to be network-friendly
and lower long-term investment are needed. The reflection of cost-driving
factors ROCNT is therefore a third indicator for an efficient grid.

The overall indicator for an efficient grid is calculated by:

IEG
NT =

1
2
· (W ′

ROUR · UCRNT + W ′
ROCR · CCRNT + ROCNT), (18.6)

where W ′
ROUR and W ′

ROCR are the relative weights of the reflection of usage-
and capacity-related costs.

Reduction of Usage-Related Costs

The first indicator is the reduction of usage-related costs. Therefore, the
usage-related costs CUR

NT under the tariff structures NT are compared with
those of undisturbed operation. As the constant energy-based tariff does
not provide time-dependent incentives, we use its value CUR

VT as a refer-
ence.

If the costs cannot be directly obtained, we propose the reduction of aggre-
gated power peaks as a proxy for the reflection of usage-related costs, as
presented in [252]. The aggregated simultaneous power peak within a net-
work is assumed to be the driving factor of usage-related costs. Therefore,
a percentage of the highest aggregated power peaks within the simulated
network, where Q(p) is the lowest peak, is used as a proxy for the usage-
related costs. The 10 % highest aggregated power peaks for all time intervals
are considered, hence p = 0.9. The aggregated power peak Ppeak

NT is calcu-
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lated by summing the power drawn from all consumers P(t) of a subset of
all time steps Tpeak = {t ∈ T : P(t) > Q(p)}:

Ppeak
NT = ∑

t∈Tpeak

P(t). (18.7)

The indicator for the reduction of usage-related costs UCRNT can be calcu-
lated and approximated by:

UCRNT = 1.5 − CUR
NT

CUR
VT

≈ 1.5 − Ppeak
NT

Ppeak
VT

. (18.8)

Reduction of Capacity-Related Costs

To quantify the ability of a tariff structure to set incentives to reduce
capacity-related costs, we again compare the capacity-related costs CCR

NT
under network tariff NT to the reference value of the volumetric tariff
CCR

VT . If these costs are not available, the reduction in aggregated contracted
capacity CCNT can serve as a proxy. Customers are thereby assumed to fall
into a lower contracted capacity category when they reduce their local power
peak on a permanent basis. The indicator for the reduction of capacity-
related costs can therefore be calculated and approximated by:

CCRNT = 1.5 − CCR
NT

CCR
VT

≈ 1.5 − CCNT
CCVT

. (18.9)

Cost Reflection

For the reflection of cost-driving factors in the costs, we use the Pearson
correlation between tariff costs and costs incurred by the customer in
combination with the slope of the correlation as proposed in [202]. Since
the reduction in cost-driving factors is already measured with the previous
two indicators UCRNT and CCRNT , we use relative values to measure the
correlation. The idea is that users should pay more if they have a high share
of aggregated power peak and contracted capacity. Therefore, the cost share
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cu,NT , the share of aggregated peaks pu,NT and share of contracted capacity
ccu,NT of a user u under tariff NT are defined:

cu,NT =
Cu,NT

CNT
, pu,NT =

Ppeak
u,NT

Ppeak
NT

, ccu,NT =
CCu,NT

CCNT
, (18.10)

To define the correlation, the share of aggregated peaks and contracted
capacity must be scaled with the share of costs both factors incur. We
therefore define adjusted parameters p‘u,NT and cc‘u,NT as follows:

p‘u,NT = pu,NT · cUR
NT , (18.11)

cc‘u,NT = ccu,NT · cCR
NT , (18.12)

where cUR
NT is the share of usage-related costs and cCR

NT the share of capacity-
related costs under network tariff NT.

The defined indicator for the reflection of costs ROCNT equals to:

ROCNT = ROCcorr
NT · ROCslope

NT , (18.13)

ROCcorr
NT = corr (cu,NT , p‘u,NT + cc‘u,NT) , (18.14)

ROCslope
NT = min

(
|β1|,

1
|β1|

)
, (18.15)

where β1 is the slope of a linear regression function

cu,NT = β0 + β1 · (p‘u,NT + cc‘u,NT). (18.16)

Fairness and Customer Acceptance

As mentioned, the criterion of fairness and customer acceptance is difficult
to measure. To really understand customer acceptance for different network
tariffs, a survey would have to be conducted, which is out of the scope of
this study. Hence, we focus more on fairness and that user groups with
low financial means should be protected. Therefore, the change in the
relative cost share of users defined as a vulnerable group VU compared to
their current relative cost share is assessed. The proposed indicator IFAC

NT
considers the fraction of the relative cost share of vulnerable consumers
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under the considered network tariff NT and the relative cost share of
customers of that vulnerable group in the status quo (SQ):

IFAC
NT = 1.5 − rcVU,NT

rcVU,SQ
(18.17)

rcVU,NT =
∑v∈VU cv,NT

gVU
(18.18)

gVU =
|VU|
|U| , (18.19)

where gVU is the group share of vulnerable consumers compared to all con-
sumers and rcVU,NT is the cost share of the vulnerable customers divided
by the group share.

Expansion of DERs

To assess the consistency with the political objective of expanding DERs,
we compare the costs before and after purchasing a DER (Cbe f ore

NT and

Ca f ter
NT ):

IEDER
NT = 1.5 − Ca f ter

NT

Cbe f ore
NT

. (18.20)

If the costs cannot be calculated, the cost drivers can be used instead. Cost
drivers for exemplary network tariffs are the purchased electricity for the
volumetric tariff, the monthly or yearly power peaks for peak tariffs and
the contracted capacity for capacity tariffs.

Efficient Electricity Usage

To evaluate whether a tariff structure fosters efficient electricity usage, we
define two indicators: the reduction in shifted energy in a 100 % renewable
system SER and the reflection of purchased electricity in the costs ROE.
Both values are combined to obtain the overall rating:

IEEU
NT =

1
2
· (SERNT + ROENT). (18.21)
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Reduction in Shifted Energy

In future systems with high shares of renewable energy, it becomes more
important when electricity is consumed. A consumption at times of high
variable renewable energy sources (VRES) feed-in can help their integration
and reduce the overall system costs. We therefore measure the change in
shifted energy, determined with the storage equivalent model described in
Chapter 12, as the ability of a tariff structure to set incentives to reduce the
temporal flexibility needs in renewable power systems. For this, the total
shifted energy SENT under the tariff structures NT is normalised compared
to a base value under the volumetric tariff SEVT :

SERNT = 1.5 − SENT
SEVT

. (18.22)

Reflection of Purchased Electricity

If the purchased electricity is reflected well in the costs, consumers have
an incentive to reduce their electricity consumption. We therefore define a
new indicator measuring the correlation between a customer u’s electricity
share peu,NT and its cost share of the total paid costs cu,NT under a given
tariff:

ROENT = ROEcorr
NT · ROEslope

NT , (18.23)

ROEcorr
NT = corr (cu,NT , peu,NT) , (18.24)

peu,NT =
PEu,NT

PENT
, (18.25)

ROEslope
NT = min

(
|β3|,

1
|β3|

)
, (18.26)

where β3 is the slope of a linear regression function

cu,NT = β2 + β3 · peu,NT . (18.27)

18.2 case study - application of the proposed framework

In this section, we showcase the application of the proposed framework to
prove its applicability. Therefore, we use the consumers’ reaction modelled
in the previous chapter to evaluate the effects on the distribution grids.
The results are then used to calculate the proposed indicators and the final



18.2 case study - application of the proposed framework 317

ranking of the different electricity tariffs. The values of the relative weights
in the first level of the process are obtained from pairwise comparison ma-
trices filled out by the interviewed stakeholders. We want to emphasise that
the case study is mainly meant to prove the applicability of the proposed
framework and therefore uses some simplifications, like the limited number
of expert weightings.

18.2.1 Simulation Setup

We use the data obtained in the previous chapter to apply the second level in
the proposed framework. Even though the framework is originally intended
to evaluate network tariffs, we expand the application to all investigated
electricity tariffs, i.e. the combination of network tariff and suppliers‘ costs.
The same assumptions for consumers and DER penetrations as in the
previous chapter (see Sections 17.2.1 and 17.2.2) are used for the following
investigations. The constant energy-based tariff is used as a reference, i.e.
VT = Ec. For clarity, the investigated tariffs are shortly summarised in the
following. A more detailed description and the used values are summarised
in Section 17.2.3 and Table 17.1. The tariffs can be divided into three
groups:

purely energy-based tariffs : As already mentioned, the constant
energy-based tariff Ec serves as the reference. Furthermore, the day
and night tariff Ed/n with high prices during the day and low prices
at night is investigated. The last two purely energy-based tariffs Er
and Er−mv are based on the grid residual load. The prices of Er
thereby follow the residual load at the medium voltage (MV)/low
voltage (LV)-transformers, and the prices of Er−mv follow the residual
load at the high voltage (HV)/MV-transformers.

purely capacity-based tariffs : We consider three purely capacity-
based tariffs, two of which are solely applied to load and one addi-
tionally pricing feed-in peaks. Tariff CL prices the annual peak load of
consumers. The segmented tariff CSG prices the power consumption
in segments, with increasing prices for higher power segments. The
capacity-based tariff for load and feed-in CLF prices the annual peaks
of load and feed-in.

mixed tariffs : Three mixed tariffs are investigated. The first (ErCLF) is
the combination of the grid residual load based energy component
and the capacity peak components on load and feed-in. The second
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(EcSr) is the combination of the constant energy-based network tariff
with time-varying suppliers´ costs. Finally, the last (CLFSr) is the
combination of the capacity-based network tariff on load and feed-in
peaks with time-varying suppliers´ costs.

18.2.2 Simplifications and Adaptions of Indicators

The overlying grid levels are not modelled. Therefore, we use the pro-
posed proxy of aggregated power peaks Ppeak

NT to estimate the reduction
of usage-related costs. For the reduction of capacity-related costs, we use
the reduction of grid reinforcement costs determined in the previous chap-
ter.

For the share of usage- and capacity-related costs, we use values from the
literature, where 41 % of the costs were linked to consumption and 59 % to
gross asset value [243]. We use these values for the status quo (SQ) without
DERs:

cUR
SQ = 0.41, cCR

SQ = 0.59. (18.28)

For the simulated electricity tariffs ET and scenarios, the values are ad-
justed according to the respective aggregated power peaks and contracted
capacities (as assumed drivers of usage- and capacity-related costs) and
normalised such that they sum up to 1:

cUR′
ET = cUR

SQ · Ppeak
ET

Ppeak
SQ

, (18.29)

cCR′
ET = cCR

SQ · CCET
CCSQ

, (18.30)

cUR
ET =

cUR′
ET

cUR′
ET + cCR′

ET
, (18.31)

cCR
ET =

cCR′
ET

cUR′
ET + cCR′

ET
. (18.32)

For the correlation indicators, we use different cost values. For the reflection
of costs in the criterion of an efficient grid, only the costs for the network tariff
CNT are used to determine the correlation. The idea is that this criterion is
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primarily targeted at network tariffs, which should incentivise the efficient
use of the grid. For the correlation indicators in the criterion on the efficient
use of electricity, on the other hand, we use the total cost for electricity CET ,
i.e. the sum of network tariff and suppliers´ costs. The political objective of
efficient use of electricity is thus seen as an overarching goal, not primarily
targeted at the network tariffs but the electricity price.

For fairness and customer acceptance, we define the vulnerable group as
consumers who do not own DERs in the first two scenarios and whose
annual electricity consumption is below the mean of all investigated con-
sumers. In Scenario 3 and 4, (almost) all consumers own DERs. These are
therefore not accounted for when determining vulnerable consumers. The
underlying assumption using consumers that do not own DERs in Scenarios
1 and 2 is that DERs are more affordable for higher-income customers,
and only low-income customers will stay without DERs. Within the six
grids, the so-obtained share of vulnerable consumers ranges between 3.9 -
4.7 %.

For the criterion of expansion of DERs, we evaluate the cost change when
purchasing a PV system with or without battery for all consumers not
owning a PV system yet, namely inflexible consumers (HH), EV own-
ers (EV), heat pump owners (HP) and consumers owning both EV and
heat pump (EV & HP). For simplicity, the cost change for all 500 modelled
consumers is determined and then weighted with the share of the respec-
tive customer group within all consumers without PV system CGEDER =
{HH, EV, HP, EV&HP} in the evaluation process:

Ca f ter
NT

Cbe f ore
NT

= ∑
u∈CGEDER

( |u|
|CGEDER|

· crDERs
u,NT

)
, (18.33)

crDERs
u,NT =

1
2

(
crPV

u,NT + cru+PV&Bat.
u,NT

)
(18.34)

crder
u,NT =

Cder
u,NT

Cu,NT
, der ∈ {PV, PV&Bat.}. (18.35)

The reduction cr achieved by a PV system on its own (crPV
u,NT) and in

combination with a battery system (crPV&Bat.
u,NT ) are thereby weighted as

equally important.
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18.3 results and discussion

While the goal of the case study is mainly to showcase the applicability
of the proposed framework, it still yields some interesting findings that
are presented and discussed in the following. For clarity, the results are
only presented for grid PV-2 and Scenarios 1 and 4 in the following, if not
mentioned otherwise. The grid is chosen because it is the most balanced
one, comprising similar shares of load and (mainly PV) feed-in. Differences
between the grids are additionally discussed where present.

18.3.1 Weighting of Requirements

Fig. 18.4 shows the resulting weights of the different requirements provided
by the interviewed stakeholders2. The results show that the perception of
the most important objectives of network tariffs is highly dependent on the
interviewed expert. While the representatives of the authority, DSO and
regulator clearly see an efficient grid as the most important criterion, the
politics and third-party representatives do not show such a high preference
for this criterion. The representative of politics puts a high weight on
fairness and customer acceptance and expansion of DERs. The third-party
representative still sees a high importance of an efficient grid, closely
followed by efficient electricity usage.

So overall, there is no shared understanding of the most important criteria.
Visualising the different weightings can be a helpful step in defining a
suitable tariff candidate. For future development of the process, we suggest
including a step to combine the weightings of the different stakeholder
groups to arrive at a shared understanding of the relative importance of the
determined criteria. It would also be interesting to confront experts with the
results of the quantitative framework and assess whether this alters their
perception of the importance of the criteria but this was outside the scope
of this study. Furthermore, a larger pool of experts would be preferable to
gain more robust insights and to investigate whether the differences mainly
depend on the field of expertise and position or also vary significantly
within the stakeholder groups.

2 The actual values can be found in Table B.1 in the appendix.
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Figure 18.4: Criteria’s importance evaluating network tariffs based on experts’
judgements.

18.3.2 Performance Indicators

Fig. 18.5 shows the resulting performance indicators for the different net-
work tariffs under varying levels of penetration of DERs3. The performance
of the network tariffs obviously depends on the level of DER penetra-
tion.

For the indicator of an efficient grid, the performance of the tariffs is differ-
ently influenced by the penetration of DERs in the scenarios. Some show
similar values in both scenarios, namely Ec, CLF, ErCLF and CLFSr. Next
to the reference constant energy-based tariff Ec, these are all tariffs with
a capacity component on both load and feed-in (CLF) which show high
indicator values in both scenarios. Other values change significantly be-
tween the scenarios, e.g. the performance of Ed/n, Er, Er−mv, CL, CSG and
EcSr. The performance of the first tariffs decreases, while the indicator
value of EcSr increases (but still shows negative values). The decrease in
performance of the time-dependent energy-based tariffs Ed/n, Er and Er−mv
can be explained by the increasing simultaneity and newly created peaks
and resulting increased reinforcement costs that were observed in the last
chapter (see Sections 17.3.1 and 17.3.3). On the other hand, the lower values
of the load capacity-based tariffs CL and CSG are mainly caused by the fact

3 The concrete values are summarised in Table B.2 in the appendix.
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Figure 18.5: Results for the indicators of each criterion by scenario and alterna-
tive.

that with increasing DER penetrations, the reinforcement becomes more
feed-in driven, and cost components applying to only load do not give
incentives to reduce feed-in peaks.

In the displayed grid, the purely capacity-based tariff on both load and
feed-in peaks CLF performs best in both scenarios for the indicator of an
efficient grid. In some of the other grids, CLFSr is the best-performing tariff
in part of the scenarios. The general tendency in the high DER scenarios
is that the combinations with a capacity price component on load and
feed-in (CLF) perform significantly better than the other tariffs. On the other
hand, time-varying energy-based tariffs perform worst, even showcasing
negative indicator values. In the displayed grid, EcSr performs worst in
Scenario 1 with low DER penetration and Er−mv in Scenario 4 with high DER
penetration. The same tendency can be observed in most other grids as
well. In all grids, either EcSr or Er−mv are the worst-performing tariffs in all
scenarios.

The indicator of fairness and customer acceptance shows little variation in the
displayed grid for both scenarios. In Scenario 1, the segmented tariff CSG
performs best. In Scenario 4, the grid residual load energy-based tariff Er
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performs slightly better than the others. The low variation between the
tariffs can be partly explained by the fact that, in this scenario, all consumers
own all DER options. The difference in costs for the customers therefore
decreases compared to the case where some own only peak- or energy-
intensive technologies (without PV and battery energy storage systems
(BESS) to optimised self-consumption) and thus pay more (see Section
17.3.5). The effect can also be observed in the other feed-in-dominated
grids.

On the other hand, the difference between the tariffs is higher in the scenar-
ios with high DER penetrations in the load-dominated grids. In these grids
and scenarios, the capacity-based tariffs (except for the segmented tariff)
perform significantly worse than the other tariff options. The segmented
tariff CSG performs best for low to intermediate DER penetrations in all the
grids. The best tariff for high DER penetrations varies between the grids
within the options Ed/n, Er, Er−mv, CSG and CLF. The worst-performing
options vary between the grids and scenarios, with a tendency of the day
and night tariff Ed/n performing worst for low to intermediate DER penetra-
tions and capacity-based tariffs for high DER penetrations. In the previous
chapter, the day and night tariff Ed/n was the preferred option for house-
holds with several DERs (see Section 17.3.5), indicating that they can best
optimise against this tariff. This leaves inflexible consumers with a higher
share of the costs, leading to a low indicator value. However, overall, there
are not as clear trends for this indicator as for the other criteria.

The criterion for the expansion of DERs shows higher differences but only
for the low DER penetration scenario. In Scenario 4, every consumer already
owns all DERs and the indicator consequently is constant for all tariffs. In
all other scenarios, the energy-based day and night tariff Ed/n performs
best and the capacity-based tariff on peak load and feed-in CLF worst.
These tendencies are consistent over all investigated grids. Generally, tariffs
comprising peak-based price components perform worse than the other
tariffs for this criterion.

For the efficient electricity usage, the performance of the different tariff op-
tions is similar between the scenarios and grids. In low to intermediate
DER penetrations, the combination of constant energy-based network tariff
and time-varying suppliers´ costs EcSr performs best. For high DER pene-
trations, the purely constant energy-based tariff Ec outperforms the others.
The capacity-based tariff on peak load and feed-in CLF performs worst in
all investigated grids and scenarios. In general, similarly to the last criterion,
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the tariffs with peak-based price components perform worse than the other
options.

In summary, for every criterion, different tariffs perform best. The per-
formance can furthermore vary between the different grids. These results
confirm that no single network tariff consistently outperforms the others,
which was also highlighted in [202]. On the contrary, different criteria lead
to different rankings of the alternatives, and the final rating will depend on
the relative importance of the different criteria. The detailed results for the
single criteria and sub-criteria are discussed in the following sections.

Efficient Grid

Fig. 18.6 shows the indicators for the sub-criteria of the criterion of an
efficient grid in grid PV-2. It should be mentioned that the set of indicators
related to an efficient grid is most dependent on the type of grid within
all indicators. The differences thereby mainly occur along the line of the
relation of load and feed-in within the grids. Grids with high shares of load
(PV-2, Load-1 and Load-2) show different tendencies than the highly feed-
in-dominated grids (Wind-1, Wind-2 and PV-1). The results are therefore
discussed for both groups of grids.

The reflection of usage-related costs (upper left) with the indicator reduction
of usage-related costs UCR shows relatively similar values for all tariffs in
Scenario 1 but increasing variations in Scenario 4. In Scenario 1, the tariffs
comprising time-dependent energy-based network tariffs (i.e. Ed/n, Er,
Er−mv and ErCLF) perform better than the other options in grids with
relatively high shares of load (PV-2, Load-1 and Load-2). In the highly feed-
in-dominated grids (Wind-1, Wind-2 and PV-1), tariffs ErCLF, EcSr and CLFSr
show slightly higher values than the other tariff options. For these grids, the
suppliers´ costs based on the system residual load seem to correlate well
with the local situation in the grids, reducing the aggregated peaks.

For high penetrations of DERs in Scenario 4, the differences between the
tariffs and the differences between the grids increase. The reason is that the
ten per cent highest peaks highly depend on the technological composition
within the grid and the resulting grid residual load. The effects in the dis-
played grid PV-2 are strongest, but the trends are also visible in most other
grids. The exception is grid Wind-1, where little variation is visible between
the tariff options. The grid is strongly dominated by wind generation, and
most peaks therefore likely depend on the wind feed-in, with little effect on
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Figure 18.6: Results for the indicators of the sub-criteria of the criterion efficient
grid by scenario and alternative. For clarity, the values for the reduc-
tion of capacity-related costs are capped at -1.8.

the consumption pattern of residential loads. In all other grids, the purely
energy-based time-varying incentives in tariffs Ed/n, Er, Er−mv and EcSr
lead to low indicator values. In the displayed grid, the last three tariffs even
lead to negative indicator values, which means that the sum of the ten per
cent highest peaks increases by more than 50 % compared to the volumetric
tariff Ec. These results are in line with the investigations of the previous
chapter, where these tariffs lead to high new load peaks.

The best-performing tariff depends on the grid. In the displayed grid PV-2,
the pure capacity-based tariff on peak load and feed-in CLF performs best. In
grids Wind-1 and Wind-2, the tariff with additional time-varying suppliers´
costs CLFSr shows the highest indicator values. For grids Load-1 and Load-2,
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tariff ErCLF shows the highest value. The results indicate that combining
a capacity-based price component with time-varying energy-based prices
can reduce the ten per cent highest peaks if the time-varying prices are set
well. The chosen clusters for the grid residual load based tariffs might not
represent the grids well, especially the wind-dominated grids, where the
system residual load in the time-varying suppliers´ costs perform better.
Future investigations should evaluate more clusters or even separate time
series for the individual grids. This might further reduce the ten per cent
highest peaks as an indicator for usage-related costs.

The reduction in capacity-related costs CCR (upper right), on the other hand,
shows similar trends for all investigated grids except for the grid residual
load based tariffs Er and Er−mv in Scenario 1. They perform well (with indica-
tor values close to 1.5) in PV-1 and Load-2 but very poorly in Wind-2. Again,
this shows that the representative time series of the clusters work well in
some grids but not in others. On the other hand, the scenarios with higher
DER penetrations show negative values in all investigated grids, indicating
a robust trend. Analogue to the aggregated peaks, the purely energy-based
tariffs Ed/n, Er, Er−mv and EcSr show poor performance with high DER
penetrations (for all investigated grids) for the reduction of capacity-related
costs. On the other hand, the tariffs including a capacity-based price com-
ponent on peak load and feed-in CLF, ErCLF and CLFSr perform well in all
grids and scenarios. Capacity-based price components only on load in CL
and CSG achieve a reduction if there is load-induced grid reinforcement
which can be effectively reduced. For higher DER penetrations and in grid
PV-1 (with high PV penetration from the start), these tariffs become less
effective, indicating that the reinforcement becomes more feed-in-driven in
these cases.

The correlation between paid cost share and contribution to cost-driving
factors ROCcorr (lower left) differs for grids with relatively high load (PV-2,
Load-1 and Load-2) and highly feed-in-dominated grids (Wind-1, Wind-2 and
PV-1). To showcase the different effects, we display cost share versus cost
contribution of all consumers under the different tariff options in Scenario 2
for grid PV-2 (representing grids with high shares of load) in Fig. 18.7 and
for grid PV-1 (representing highly feed-in-dominated grids) in Fig. 18.8. The
cost contribution thereby indicates the contribution of the consumer to cost
driving factors (p‘u,NT + cc‘u,NT) as defined in (18.14). The cost share (cu,NT)
refers to the cost share an individual consumer pays for network tariff NT
relative to the total paid network tariff costs. Scenario 2 is chosen because,
in this scenario, all consumer groups are equally represented, which better
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Figure 18.7: Cost share vs. cost contribution of the different costumer-groups by
tariff in grid PV-2 in Scenario 2. Each customer is thereby represented
by one data point.

allows the analysis of the effects of the investigated tariffs on the different
consumer types.

The difference between the two groups of grids is that for PV-2, Load-1
and Load-2, a significant share of the ten per cent highest peaks is load-
driven. Consumers thus increase the peaks when consuming in these times.
Consequently, we see a positive correlation between cost share and cost
contribution for all electricity tariff options in Fig. 18.7. The dashed lines
display a perfect reflection of costs, and the dotted lines are the linear regres-
sions as described in (18.16). Consumer points above the dashed line pay
too much relative to their contribution to cost-driving factors, and consumer
points below too little. The energy-based tariffs tend to underestimate the
costs (β1 < 1). One reason could be the change in cost-driving factors, as
shown in Fig. 18.9. The increase in aggregated contracted capacity CC is
higher than in aggregated peaks Ppeak between the two scenarios. Therefore,
the correct representation of contracted capacity becomes more important
with growing flexibility. The energy-based tariffs do not price contracted
capacity and lead to a high increase in this capacity (because of missing
incentives to reduce it).



328 evaluation of tariff designs

Figure 18.8: Cost share vs. cost contribution of the different costumer-groups by
tariff in grid PV-1 in Scenario 2. Each customer is thereby represented
by one data point. For clarity, only consumers with cost share and
contribution between -0.05 and 0.2 % are displayed.

For these tariffs, customers owning PV and BESS tend to pay too little and
customers without too much, especially inflexible households (HH) and
HP owners (HP). The data points are relatively spread out, resulting in low
correlation indicators in Fig. 18.6 (bottom left). Capacity-based tariffs, on
the other hand, lead to data points more closely aligned with the linear
regression and, consequently, higher correlation indicators. In these cases,
the group of EV owners (EV) pays more relative to their contribution to the
cost-driving factors instead of HP owners (HP). Generally, the slope is closer
to β1 = 1 for the capacity-based tariffs, leading to higher slope indicators
in Fig. 18.6 (bottom right). It has to be mentioned that the capacity load
tariff CL loses efficacy in the scenarios with high DER penetration. In these
scenarios, feed-in peaks become more important, and they are not priced
by tariff CL.

Most of the ten per cent highest peaks are feed-in driven for the highly feed-
in dominated grids. Consumption in these times therefore reduces peaks.
All tariffs positively price electricity consumption, leading to negative
correlations between cost share and contribution for the highly feed-in
dominated grid PV-1 in Fig. 18.8. The case that it can benefit the grid to
consume electricity at certain times is not accounted for in the tariffs and
indicators, leading to poor performance of all tariffs in the highly feed-in
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Figure 18.9: Development of cost-driving factors by scenario and alternative.

dominated grids (Wind-1, Wind-2 and PV-1) in the correlation indicators for
cost reflection at high DER penetrations. Note that while all tariffs show
a negative correlation between cost share and contribution in Scenario 2
in Fig. 18.8, some of the tariffs perform better at higher DER penetrations.
This effect highlights the difficulty of designing suitable tariffs that are
simultaneously applicable to all customer groups. With increasing shares of
DERs, the share of customers owning all DERs increases, and the customers
become more uniform again. Furthermore, the results show that none of
the tariffs effectively accounts for the positive effect of consumption in
highly feed-in-dominated grids. The indicators are not designed for these
grids, which needs to be improved in future versions of the evaluation
framework.

It has to be noted that we measure the correlation between paid costs and
contribution to cost-driving factors since it is hard to assess the contri-
bution to the absolute costs directly. These cost-driving factors are easier
to approximate than the real costs and might therefore overestimate the
correlation.

Fairness and Customer Acceptance

In all the grids, the highest indicator value for the criterion of fairness and
customer acceptance occurs for the segmented tariff CSG in scenarios with
low to intermediate DER penetrations (see Fig. 18.5). With increasing DER
penetrations, different tariffs perform best. However, the variation is small
in most grids. Only in the grids Load-1 and Load-2 do the tariffs show sig-
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nificant differences for these scenarios with low indicator values for tariffs
with peak price components. It has to be mentioned that the distribution
of DERs in Scenarios 3 and 4 does not consider any statistical deviations
between vulnerable and other consumers that might occur in reality (e.g.
that vulnerable consumers might tend to buy smaller appliances). The
results in these scenarios should therefore be interpreted with care.

To compare the costs paid by the vulnerable consumers compared to the
other customers, the cost contribution and paid cost shares of both groups
are displayed in Fig. 18.10. It shows that for CSG, the other consumers
pay relatively more, explaining the higher indicator value. However, the
displayed linear regression for vulnerable consumers shows that the cost
increase relative to the increase in cost contribution is higher than the
perfect reflection (indicated by the slope of the regression). Furthermore,
the slope of the linear regression for the vulnerable consumers in Fig. 18.10

is steeper than that for all consumers in Fig. 18.7. This means that the
vulnerable consumers pay more with increasing cost contributions than the
mean of all consumers. In the current version of the indicator, the reflection
of costs for vulnerable consumers is not accounted for, only the paid costs
relative to their group share. In future versions, the correlation could be
included as an additional sub-indicator to factor in the higher costs for
increasing cost contributions.

Our results furthermore show that inflexible consumers generally pay less
relative to their group size in Scenarios 1 and 2 than in the status quo with a
volumetric tariff Ec (indicator values > 0.5). In the other scenarios, the costs
are higher. However, the overall costs that have to be covered might increase
in Scenarios 1 and 2, potentially leading to higher absolute costs for the
vulnerable consumers in these scenarios as well. For future investigations,
the framework could be expanded with the absolute change in costs paid
by the vulnerable consumers if DSOs have to recover their costs, i.e. taking
into consideration the changes in usage- and capacity-related costs.

As already mentioned in [202], fairness is hard to measure, and the per-
ception of what is fair might depend on the perspective. One possible
interpretation is that those who cause high costs should also pay relative to
that. In the proposed framework, this aspect is already covered in the indica-
tor for an efficient grid. We therefore focus on vulnerable customer groups
and ensure that no network tariffs disadvantage this group. In the case
study, we choose the inflexible consumer group to represent vulnerable con-
sumers. The idea behind that is that in a situation with high penetration of
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Figure 18.10: Cost share vs. cost contribution of vulnerable and other consumers
by tariff in grid PV-2 in Scenario 2. Each customer is thereby repre-
sented by one data point. The linear regression is performed only
for the vulnerable consumers.

DERs, such as Scenario 2, it must be favourable to purchase DERs and every
consumer with the economic means would do so. In reality, wealthy con-
sumers might choose not to purchase DERs despite their economic ability
to do so. In this case, the results could be distorted, and the indicator value
could be lower than it should be. Therefore, a second factor, the consumed
electricity, was used to define vulnerable consumers. However, in real appli-
cations, the vulnerable consumers should be defined by economic factors
which may not correlate perfectly with electricity consumption.

The current work assumes that customer acceptance will be high if the
tariff is fair. However, it was shown that the perception of the fairness
of specific tariff options is heterogeneous and that social tariffs are not
necessarily perceived as fair [213]. We therefore propose to conduct surveys
in future work to estimate the perception of fairness and the customer
acceptance of specific network tariffs, similar to [213]. This way, the influence
of simplicity, predictability and understandability of network tariffs, which
were introduced as additional factors influencing customer acceptance in
the literature [57], [202], [211], could also be considered. It was shown
previously that the perception of how fair a tariff option changes when
additional arguments for the tariff are provided [211]. This effect shows that
customer acceptance is not a fixed value but can be influenced by providing
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additional information on the tariff options. It should therefore also be the
goal to educate customers and provide a transparent decision process to
increase customer acceptance.

Consistency with Political Objectives

In the interviews, it was expressed that the tariffs should not contradict
certain political objectives, namely the expansion of DERs and efficient
usage of electricity. However, political objectives can be subject to change.
For the efficient use of electricity, it can be discussed whether the availability
of clean energy resources reduces the importance of this sub-criterion. As
an example, there has been a debate about reducing the obligatory energy-
related component of network tariffs and increasing power-related price
components in Switzerland [253]. For the expansion of DERs, there is an
ongoing debate about whether central larger assets are more efficient or a
more decentralised energy system is preferable (e.g. [254]). Similarly, new
political objectives might evolve. This criterion and its sub-criteria should
therefore be adapted according to the political developments and the region
under investigation. However, here we discuss the sub-criteria identified by
the stakeholders and presented in Section 18.1.1.

Expansion of DERs

This indicator measures the cost reduction by purchasing a PV system
with or without a battery. Fig. 18.11 shows the costs after purchasing a PV
system with or without battery relative to the costs before the purchase.
The displayed values include the change in network tariff and suppliers´
costs, considering the revenues of selling to the grid. Our investigations do
not account for the investment costs. Note that for the displayed indicators,
low values are preferable since they represent low costs after purchasing
PV systems with and without BESS, thus increasing their attractiveness for
investments into these technologies.

The results show that the day and night tariff Ed/n leads to the highest
cost reduction when purchasing PV systems with and without batteries
for all displayed consumer groups. The lowest reduction is observed for
tariff CLFSr in all cases. The reason is twofold. First, peak-based network
tariffs show lower reduction potential than energy-based tariffs. This is
somewhat contrary to the results of our original case study [233] and other
work in the literature (e.g. [230]), where PV-systems with battery were
found to be more economical with capacity-based than energy-based tariffs.



18.3 results and discussion 333

PV PV & Battery

0.0

0.2

0.4

0.6

cr
de

r
H

H
[-

]
Relative costs after purchasing

DERs for inflex. consumers

PV PV & Battery

0.0

0.2

0.4

0.6

cr
de

r
E

V
[-

]

Relative costs after purchasing
DERs for EV owners

PV PV & Battery

0.0

0.2

0.4

0.6

cr
de

r
H

P
[-

]

Relative costs after purchasing
DERs for HP owners

PV PV & Battery

0.0

0.2

0.4

0.6
cr

de
r

E
V

_H
P

[-
]

Relative costs after purchasing
DERs for owners of EV and HP

Ec
Ed/n

Er
Er−mv

CL
CSG

CLF
ErCLF

EcSr
CLFSr

Figure 18.11: Costs for inflexible consumers (left) and EV owners (right) after
purchasing a PV system with and without battery relative to the
costs before the purchase.

However, in [233], it depended on the time scale of the tariff, and a monthly
peak price achieved a higher reduction than an annual one. Thus, peak-
based prices on shorter periods might perform better and could be an
interesting extension of this work. Furthermore, EVs were not assumed
flexible in the previous study, leading to high peak values that could be
effectively reduced by PV-BESS-systems. The second factor is the time-
varying suppliers´ cost, which has lower prices in times of high PV feed-in,
leading to lower revenues.

For PV systems with a battery, the possible cost reduction is generally
higher than for a PV system without a battery. The highest reduction can be
achieved for inflexible customers, where even negative values occur for most
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investigated electricity tariffs. This means that the revenues by selling PV
feed-in to the grid exceed the costs of electricity purchase and network tariff
costs. However, we omit taxes, surcharges and levies. Consumers might
therefore still pay despite the negative values. Still, the negative values
indicate that the PV-battery systems are oversized relative to the household
loads without EV or HP. In future studies, the size of PV systems (and
other DERs) could be chosen more specific to the individual households and
depending on existing household load and other connected DERs.

We see in our results that the reduction of tariff costs by purchasing DERs
differs with the type of tariff. For example, the day and night tariff leads
to a higher cost reduction for PV-battery systems than the other tariffs.
This effect consequently influences the investment of consumers in PV and
batteries. In future work, the composition of customers within the scenarios
could be adjusted accordingly, or the resulting investments could be directly
assessed.

Efficient Use of Electricity

Fig. 18.12 shows the indicators for the sub-criteria of the criterion efficient
use of electricity. The reduction of shifted energy SER (Fig. 18.12 top) is similar
for all tariffs in the low flexibility scenario, showing the highest values for
the tariffs with time-varying suppliers´ costs EcSr and CLFSr. In the high
flexibility scenario, on the other hand, the differences are more pronounced,
and the combined scenario with capacity-based prices on load and feed-
in and time-varying suppliers´ costs CLFSr clearly outperforms the other
tariffs. For a more detailed discussion of the required shifted energy with
the different tariff options, we refer to the previous chapter 17.3.4.

The correlation of the share of electricity usage and cost share ROEcorr

(Fig. 18.12 bottom left) is relatively high for all alternatives in both sce-
narios. The gradient ROEslope (Fig. 18.12 bottom right), in contrast, shows
more significant variations but the same tendency of high values for the
energy-based tariffs and lower values for tariffs including capacity-based
price components. The energy-based tariffs (and the segmented tariff) nat-
urally perform best regarding the reflection of purchased electricity in
the costs as they essentially price the electricity consumption. With the
peak-based tariffs, consumers with higher peaks pay relatively more than
consumers with lower peaks but with the same electricity consumption.
With increasing penetrations of DERs, the variation of consumption profiles
increases, especially with high peak consumption from EVs. With more
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Figure 18.12: Results for the indicators of the sub-criteria of the criterion efficient
usage of electricity by scenario and alternative.

varying peak-to-energy ratios, the reflection of purchased electricity by
peak- or capacity-based tariffs decreases.

Other Relevant Factors

As mentioned earlier, regulatory feasibility is crucial for implementing
a network tariff, which depends on the regulatory framework within a
country. The regulatory feasibility is not necessarily a factor to consider
when evaluating the general suitability of a tariff structure. However, it
has to be considered when it comes to implementing a new tariff structure.
Furthermore, the regulatory framework is not fixed but can be adapted to
a changing situation. The results of a more general evaluation of different
network tariff types against each other could therefore provide arguments
for or against certain aspects of the regulatory framework.
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Like regulatory feasibility, technical feasibility is crucial for implementing a
tariff structure but not relevant for a statement on its theoretical suitability.
Some tariff structures do not require any technical conditions for their
implementation. However, there are also some, such as dynamic tariffs
or static power tariffs, which depend on infrastructure for measuring the
network status. This data must be available for tariff structures based on
the real-time electricity consumption or the network status. Today, the
distribution network is not yet measured across the board, especially at the
low-voltage level. However, with the increased equipment of end customers
with smart meters, the technical requirements for specific tariff structures
can be provided [242].

18.3.3 Overall Ranking

Fig. 18.13 shows the overall ranking of the analysed tariffs with equal
weights and expert weightings. The results are normalised, i.e. the scoring
of all alternatives with a specific set of weights (e.g. equal weights) is
multiplied with a constant factor such that IEc = 0.5. The conducted case
study uses several simplifications. The results should therefore not be taken
as the ground truth but more to raise awareness about some underlying
tendencies.

First, the "optimal" tariff depends on the weighting of criteria, the grid and
the penetration of DERs. In Scenario 1 of the displayed grid, the capacity-
based tariff pricing peak load and feed-in CLF scores the highest rating for
the expert weighting of the representatives of authority, DSO and regulator.
For the third party representative and equal weighting of all criteria, the
mixed tariff with grid residual load based energy-based price component
and capacity-based price component on peak load and feed-in ErCLF is
rated best. The weighting of the politics representative leads to the seg-
mented tariff CSG being rated best. Independent of the rating, the tariff with
constant energy-based network tariff and time-varying suppliers´ costs EcSr
performs worst in this scenario and grid.

In Scenario 4 with 100 % DER penetration of the displayed grid, the time-
varying energy-based tariff based on the residual load at the HV/MV-
transformer Er−mv scores the lowest rating for all weightings, and the
capacity-based tariff pricing peak load and feed-in CLF scores the high-
est rating for all investigated weightings. It has to be mentioned that in
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Figure 18.13: Overall ratings of investigated tariffs with equal weights and expert
weighting for the two scenarios. Results are normalised such that
IEc = 0.5 for every set of weights.

the other grids, there is more variation for the best-performing tariff in
Scenario 4.

Figure 18.14 therefore displays the share of tariff options that score best (top)
and worst (bottom) for the different combinations of expert weighting and
grid in the four simulated scenarios. In Scenario 1 (S1), the best-performing
tariffs are divided between various options. The segmented tariff CSG
displays the highest share, followed by the pure capacity-based tariff pricing
peak load and feed-in CLF and its combination with time-varying suppliers´
costs CLFSr. With increasing shares of DERs, the share of the segmented
tariff CSG in the best-performing tariffs decreases. On the other hand, the
share of the pure capacity-based tariff pricing peak load and feed-in CLF
slightly and its combination with time-varying suppliers´ costs CLFSr in the
best-performing tariffs significantly increase with increasing shares of DERs.
Generally, the share of purely energy-based tariffs in the best-performing
tariffs is comparably low in all investigated scenarios, reaching a maximum
of 12 % in Scenario 4 (comprising 6 % constant energy-based Ec and 6 % grid
residual load based tariff Er).
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Figure 18.14: Share of best (top) and worst (bottom) rated tariff options in the
different scenarios.

On the other hand, the largest share of worst-performing tariffs in all
scenarios comprises time-varying purely energy-based tariffs, ranging from
91 - 97 %. In Scenario 1, the combination of constant energy-based network
tariff with time-varying suppliers´ costs EcSr performs worst in almost all
cases. Its share decreases with increasing shares of DERs, while the share
of the tariff based on the grid residual load at the HV/MV-transformer Er
increases.

The weighting of the different criteria influences the final rating. Figure
18.15 therefore displays the influence of the weighting on best-performing
(left) and worst-performing (right) tariffs. The division of worst-performing
tariffs is relatively stable between the different weightings with ∼ 60 % EcSr
and ∼ 40 % Er−mv. The only significant deviation can be observed for the
weighting of the politics representative. There, other tariffs, i.e. CL, CLF and
Ed/n, occur additionally to EcSr and Er−mv.

The best-performing tariff proves to be more sensitive towards the weight-
ing. For weightings strongly prioritising the criterion of an efficient grid,
like the representatives of the authority, DSO and regulator chose, the
capacity-based tariff on peak load and feed-in CLF and its combination with
time-varying suppliers´ costs CLFSr show the highest scores in most cases.
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Figure 18.15: Share of best (left) and worst (right) rated tariff options with differ-
ent weightings.

For the weighting of the third party representative, where the efficient use
of electricity is rated as similarly important as an efficient grid, the com-
bined tariff CLFSr makes up a higher share than the pure capacity-based
tariff CLF. The politics representative with a higher preference for fairness
and customer acceptance leads to a different division of best-performing
tariffs, strongly dominated by the segmented tariff CSG, which performs
best in that criterion. The equal weighting of criteria leads to a more diverse
distribution of best-performing tariffs. The segmented tariff CSG also makes
up the highest share in this case, followed by the combined capacity-based
tariff with time-varying suppliers´ costs CLFSr.

While the best- and worst-performing tariffs can indicate trends between
the different scenarios and criteria weightings, the difference between the
first- and second-best tariff options is partly very small (see Fig. 18.13),
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which is not accounted for in these considerations. Figure 18.16 therefore
displays the mean rating over all investigated scenarios, criteria weightings
and grids. The black bars thereby indicate the 95 % confidence intervals.
The results show that the first- and second-best options show very similar
values, i.e. the capacity-based tariff on peak load and feed-in CLF and
its combination with time-varying suppliers´ costs CLFSr. Other tariffs
including capacity-based price components follow. These are the segmented
tariff CSG, the combination of peak prices on feed-in and load with a
grid residual load based energy component ErCLF and the peak price on
load only CL. They all perform better than the reference tariff of constant
energy-based prices Ec. In contrast, all time-varying purely energy-based
tariff options perform worse, namely the tariff based on the grid residual
load at MV/LV-transformers Er, the day and night tariff Ed/n, the tariff
based on the grid residual load at HV/MV-transformer Er−mv and the
combination of constant energy-based network tariff with time-varying
suppliers´ costs EcSr. The last two tariffs show high variations between the
scenario variations (indicated by the large confidence intervals) while the
other tariffs show relatively stable values in comparison. It indicates that
the performance of Er−mv and EcSr is more dependent on the scenario and
grid than that of the other tariffs.

It should be noted that three of the six investigated combinations of crite-
ria weightings strongly prioritise the criterion of an efficient grid (see Fig.
18.4), which is best met by tariffs with a peak component on both capacity
and load (see Fig. 18.5). For a different set of weights, the order of tariffs
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could thus change. On the other hand, higher grid reinforcement needs
also lead to increased costs that the DSOs has to cover. We did not account
for this fact in our investigations, where all tariffs were designed so that
inflexible consumers pay the same. In reality, the tariff options would be
scaled to guarantee cost recovery. Therefore, inflexible consumers would
end up paying more for options that lead to high reinforcement costs and
the criterion of fairness and customer acceptance would change accordingly.
If the absolute costs for vulnerable consumers were additionally included,
the capacity-based tariffs would likely perform even better compared to
the other options. However, to estimate the cost change, it would be neces-
sary to know the exact cost structure of the respective DSO, which is not
openly accessible and the reason why we did not include this aspect in our
investigations.

The segmented tariff CSG performs relatively well even though it is only
applied to the load and not the feed-in and was not scaled to increasing
consumption by HPs and EVs. We therefore recommend adjusting both
in future investigations and additionally considering a combination of
the segmented tariff and peak price components, which might combine
the advantages of both options. Lastly, all mixed tariffs assume the same
magnitude of capacity- and energy-based price components. A different mix
with higher values for one or the other might increase the performance and
a possible extension is to optimise a mixed tariff for the overall weighted
ranking of the proposed framework.

Since the framework is very flexible and can be applied to any time series
data, it could also be used to evaluate other economic incentive schemes,
like billing energy communities or consumer groups instead of single
customers and market-based flexibility procurement. However, it would
have to be assessed first whether the defined criteria are all relevant for the
investigated schemes and if additional requirements should be considered.
For these, new indicators would have to be defined and integrated into the
framework. The combination of market-based consumption and feed-in
with different network tariff options would be specifically interesting to
investigate since the investigations in the previous chapter proved that fixed
price time series can lead to overshooting at high DER penetrations and a
market-based approach might therefore be the better option.
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18.4 conclusions and policy implications

We propose a new process with stakeholder involvement to extract and
measure the requirements of network tariffs, which we applied to a Swiss
use case. The relevant criteria for evaluating network tariffs were identified
through stakeholder interviews and translated to an open-source evalua-
tion framework using a MCDA approach based on the AHP. Lastly, we
applied the new framework to ten different electricity tariffs to showcase
its usability.

According to the stakeholders interviewed, network tariffs should fulfil the
criteria of an efficient grid, fairness and customer acceptance and consistency
with political objectives. An efficient grid requires the reduction of usage- and
capacity-related costs as well as cost reflection. Furthermore, two relevant
objectives were mentioned for consistency with political objectives: the
expansion of DERs and efficient use of electricity.

Regarding the relative importance of the criteria, there is no common under-
standing of which criterion is the most important among the interviewed
experts. While the representatives of the authority, DSO and regulator
weigh an efficient grid as the most important criterion, the representatives
of politics and third party choose fairness and customer acceptance and
consistency with political objectives, respectively. Converging to a common
understanding of the relative importance of the different criteria should
therefore be a focus in defining a suitable future network tariff.

We translated the identified design criteria to a quantitative evaluation
framework, which is modular, easily adaptable and available open source.
It can thus be adapted to the local situation for specific DSOs and further
refined in future work. The framework facilitates the comparison of different
tariff designs and can be applied to various scenarios and tariff options. For
the case study, we expanded it to cover electricity tariffs, i.e. the combination
of network tariffs and suppliers´ costs.

We compared ten tariffs (different energy- and capacity-based network
tariffs in combination with constant or time-varying suppliers´ costs) in
scenarios with low and high penetration of DERs. The results show that
tariffs including capacity-based price components on average perform better
than the reference constant energy-based tariff over all investigated scenario
combinations. On the other hand, time-dependent energy-based prices
perform worse than the reference, supporting the political process to move
away from a purely energy-based network tariff. However, the performance
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also depends on the chosen criteria weighting, the grid and penetration
of DERs. With increasing DERs penetrations, the tariffs with capacity-
based price components increasingly outperform the purely energy-based
options, stressing the importance of adapting network tariffs to a changing
environment.

We showed that the optimal tariff highly depends on the local situation in
the grids and the weighting of criteria. The choice of adapted tariffs should
therefore always be subject to the negotiation of different stakeholder
groups. Our open-source evaluation tool can be a first step towards a
more informed and transparent decision process. It can help visualising
the complex interplay between the different, partly contradicting goals of
network tariffs and simplify the choice of a suitable tariff option for future
electricity systems with high penetrations of DERs.





19
C O N C L U S I O N

19.1 main findings

Energy systems worldwide are transitioning towards a more sustainable
energy supply, largely depending on renewable energy sources. In Germany,
photovoltaics (PV) and wind generation most likely dominate a fully renew-
able energy system. To ensure a secure power system operation with high
shares of such variable renewable energy sources (VRES), power system
flexibility is a key enabler, and flexibility needs are increasing. This thesis
investigated the possible contribution of decentralised flexibility options,
namely electric vehicles (EVs), residential heat pumps (HPs) and battery
energy storage systems (BESS) in terms of meeting geographic and tempo-
ral flexibility needs and what are good economic incentives to untap their
flexibility potential.

In order to quantify these flexibility needs and their supply, a range of
tools and models have been developed in the framework of this thesis
(further detailed in the following Section 19.2). The tools and investiga-
tions of this work thereby focused on the temporal flexibility needs of the
German system and geographic flexibility needs within typical German
distribution grids. Geographic flexibility needs were measured by required
grid reinforcement and the resulting costs, and temporal flexibility needs
by required energy shifting on different time scales. The time scales consid-
ered in this work were short-term shifting on a daily scale, medium-term
shifting up to a month and long-term shifting covering anything longer
than that. The main insights and key findings gained with the help of these
concepts are summarised along the research questions (RQs) posed in the
introduction of this thesis in the following.

RQ1: What is the flexibility need in a renewable German power system?

• Variable renewable energy sources lead to an increase in temporal
and geographic flexibility needs. Additionally, the uptake of decen-
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tralised sector coupling technologies, i.e. residential EVs and HPs,
increases geographic and temporal flexibility needs if uncoordinated.
The impact of HPs is thereby higher than that of EVs.

• Under the current load and mix of PV and wind generation, the tem-
poral flexibility needs increase between two- to three-fold for a system
powered by PV and wind only compared to a continuous power gen-
eration (representing the preferred operation of conventional base
load power plants). Increasing shares of decentralised flexibility op-
tions further change the flexibility needs in this renewable German
power system. Introducing 100 % EVs and HPs, i.e. every private
car is replaced by an EV and every residential building owns a HP,
increases the temporal flexibility needs by up to 21 % and 30 % when
uncoordinated. EVs thereby mainly increase short- and medium-term
flexibility needs, while HPs primarily cause an increase in long-term
energy shifting. Integrating 100 % BESS under reference operation, i.e.
every residential building owns a BESS, decreases the flexibility needs
by 12 %, thereby mainly supplying short-term flexibility needs.

• The generation mix influences the temporal flexibility needs in a
100 % renewable German system powered by PV and wind only.
The resulting temporal flexibility needs furthermore depend on the
interplay of generation and demand. With the current demand, a mix
of 25 % PV and 75 % wind generation minimises the total temporal
flexibility needs. While EVs do not change the optimal mix, it shifts to
20 % PV and 80 % wind generation for 100 % HP penetration and to
35 % PV and 65 % wind for 100 % BESS. The total change in flexibility
needs and the division into short-, medium- and long-term flexibility
needs caused by the integration of EVs, HPs and BESS also change
with the generation mix. Choosing the right generation mix for the
expected uptake of distributed energy resources (DERs) can therefore
limit the additional temporal flexibility needs.

• The geographic flexibility needs caused by the integration of dis-
tributed energy resources depend on the technology and penetration.
Residential PV lead to mean costs of 74 €/kW in the investigated
grids. Whether or not the PV system is equipped with a BESS thereby
does not significantly change the costs. This result showcases that the
currently dominant operational strategy maximising self consump-
tion does not benefit the grid. Home charging stations for EVs and
residential HPs lead to mean costs of 19 €/kW and 185 €/kW in the
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investigated grids. For a simultaneous integration of EVs, HPs and
PVs with BESS, HPs prove to be the main driver of reinforcement
costs. With increasing shares of DERs, the marginal costs for their
integration increase since larger parts of the grids reach their limits.

RQ2: What share of this flexibility need can be supplied by decentralised flexibility
options?

• Using the flexibility of decentralised flexibility options offers a large
potential to decrease geographic and temporal flexibility needs.

• The temporal flexibility needs and reduction potential of decentralised
flexibility in a 100 % renewable German power system with generation
only from PV and wind again depend on the generation mix. The
flexibility needs at the optimal mix of PV and wind can be reduced by
54.9 % for an optimised operation of EVs, HPs and BESS compared to
the reference operation if every private car is replaced an EV and every
residential building is equipped with a HP and BESS. Compared to
the optimal generation mix and the current demand (i.e. without the
integration of EVs, HPs and BESS) this signifies a reduction of 35.3 %.
The flexibility of EVs, HPs and BESS can thereby mainly supply the
short-term flexibility needs (shifting within one day). When shifting
between different charging sessions is possible for EVs, they can
additionally reduce medium-term shifting (shifting up to one month).
The long-term shifting cannot be reduced and would have to be
supplied by other sources.

• The geographic flexibility needs in terms of distribution grid reinforce-
ment increase with increasing shares of DERs even if their flexibility is
utilised for a grid-friendly operation. The total costs can be decreased
by roughly 40 % for the combined integration of DERs if the assets
are operated grid-optimised. For a separate investigation of smart EV
charging, a rule-based reduced charging achieved similar reduction
in grid reinforcement costs as the optimised operation. This approach
could therefore pose a simple but effective alternative to the centrally
optimised charging.
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RQ3: Which economic incentive systems are most suitable to stimulate a system-
friendly operation of decentralised flexibility options?

• Economic incentives can have positive and negative effects on flexibil-
ity needs and supply. Time-varying energy-based prices can lead to
higher simultaneities and increase temporal and geographic flexibility
needs. Peak-based prices, on the other hand, can counteract this effect
and reduce new peaks and resulting grid reinforcement. On their
own, these price components do not largely influence the temporal
flexibility needs but can prevent overshooting for high penetrations of
decentralised flexibility, which occurs for time-varying purely energy-
based tariffs. Summarising, economic incentives should be carefully
designed to account for geographic and temporal flexibility needs.
The combination of time-varying energy-based prices and capacity-
based peak prices on load and feed-in pose a promising option to
reduce temporal and geographic flexibility needs, especially at low
DER penetrations. At high penetrations of decentralised flexibility, a
direct market integration instead of the energy-based price component
should be considered to prevent overshooting.

• Electricity tariffs, as one specific economic incentive, follow many dif-
ferent, partly contradicting goals. The most important design criteria
to meet these goals (determined by expert interviews) are an efficient
grid, fairness and customer acceptance and consistency with other political
objectives. These criteria are met differently well by the investigated tar-
iff options and a different tariff option performs best for each criterion.
Therefore, the best performing tariff also depends on the weighting
of criteria. Overall, tariffs purely based on time-varying energy-based
price components perform worse than tariffs including capacity-based
price components in our investigations. Capacity-based pricing should
therefore be included in future tariff designs, especially at high pene-
trations of DERs.

19.2 summary of tools

In the course of this PhD research, several tools were developed or ex-
panded to investigate the role of decentralised flexibility in renewable
power systems. Figure 19.1 displays the tools, which are all available open
source and can serve as the basis for future investigations. Their scope and
functionalities are briefly summarised in the following.
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Figure 19.1: Open source tools created or expanded in the course of this disserta-
tion.

OpFEl is a tool for decision support for the right existing model. It focuses
on the representation of different flexibility options and relevant aspects
for investigations concerning flexibility assessments. Since flexibility is
relevant on a wide range of geographic and temporal scales, and many
technologies can supply flexibility needs, the model choice highly depends
on the research question at hand and the focus of the study. Therefore,
OpFEl allows the definition of relevant criteria and examines to which
extent these aspects defined by the user are covered in the investigated
models. Lastly, it returns a final ranking based on a weighted sum. It was
used in Part I of this thesis to choose the model for distribution grids.

DFOs is a tool for the sizing and reference operation of DERs, namely EV
home charging stations, HPs and PV systems with BESS. The so-obtained
pool of DERs served as the basis for all further investigations of the PhD
research. The tool is closely linked to the existing tool eDisGo, which was
expanded with the implementation of a grid-optimised operation of decen-
tralised flexibility options based on a linear optimal power flow formulation.
Together, both tools can be used to estimate the required grid reinforce-
ment costs under reference and optimised operation for increasing shares
of DERs (using the previously existing grid reinforcement methodology
implemented in eDisGo). Both were used in Part II of this thesis to estimate
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the geographic flexibility needs in representative German distribution grids
and their supply by decentralised flexibility options.

A model for temporal flexibility quantification is provided with SEM. It
measures the required energy shifting on different time scales to balance
electricity generation and demand as a measure for temporal flexibility
needs. It furthermore allows to assess the flexibility supply by decentralised
flexibility options. This model (with input data obtained from the tool
DFOs) was used in Part III of this thesis to estimate the flexibility needs in
a fully renewable German power system and the influence of increasing
shares of decentralised flexibility options on temporal flexibility needs and
supply.

Well designed electricity tariffs can help to leverage the flexibility potential
of decentralised flexibility options. The developed consumer model NeTS
allows to investigate the influence of different electricity tariff designs on
residential consumption patterns. It economically optimises the operation
of residential consumers with different combinations of DERs and was used
in Part IV of this thesis to compare different combinations of suppliers’ costs
and network tariffs. The resulting consumption patterns were therefore
used as input for eDisGo and SEM to measure the effect on geographic and
temporal flexibility needs and supply.

Choosing a suitable tariff does not solely depend on their effect on flexibility
needs but on a variety of decision criteria. To this end, the tool EFf-NeTs

provides decision support for choosing network or electricity tariffs under
increasing penetrations of DERs. It combines the most important decision
criteria obtained from stakeholder interviews in a quantitative evaluation
framework, namely the criteria of an efficient grid, fairness and customer
acceptance and consistency with other political goals. The tool was used in
Part IV of this thesis to rank the investigated tariffs. Therefore, expert
weightings of the decision criteria, the consumer profiles and costs provided
by NeTS, and resulting flexibility needs obtained with eDisGo and SEM
were used as input to obtain a final ranking of the investigated tariffs.

19.3 further research needs

Although this thesis tries to touch on the most critical aspects of decen-
tralised flexibility in renewable power systems, several aspects need further
investigation and provide avenues for future research:
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• The investigations focused on residential consumers, largely omitting
flexibility from other sources. In future investigations, the interplay
with industrial demand side management, large-scale HPs or storage
and other flexibility options should be included. Furthermore, the
flexibility provided by the thermal inertia of the building itself was not
accounted for in this thesis. Incorporating a more accurate building
model which leverages building flexibility would be an interesting
extension of this work.

• In the grid studies, only rural and sub-urban grids were investigated
since they were found to be affected stronger by the integration of
DERs in the literature. However, including urban grids and expanding
the carried-out investigations to a representative study for the whole
of Germany would be an interesting use case and could further
increase the robustness of the results.

• Geographic and temporal flexibility needs were investigated inde-
pendently in this thesis. However, in reality, both are highly intercon-
nected and influence each other. Furthermore, both compete against
each other in terms of utilisation of available flexibility. A combined
investigation of both would help find an optimal balance between
geographic and temporal flexibility needs. First investigations showed
little influence of distribution grid constraints on the possible reduc-
tion of energy shifting. However, further investigation is required to
draw final conclusions.

• The study on electricity tariffs showed that, in some cases, incentives
for individual consumers counteract local synergies between different
consumers. It would be interesting to study concepts that incentivise
groups of consumers like energy communities to leverage these lo-
cal synergies. Furthermore, the market integration of decentralised
flexibility should be investigated since it was shown that at high DER
penetrations, purely price-based incentives lead to overshooting.

• This thesis mainly focused on the technical potential of decentralised
flexibility to decrease geographic and temporal flexibility needs. Esti-
mating the maximum potential naturally comes with many simplifi-
cations and is far from the realisable potential. Therefore, it would be
interesting to include aspects like customer response, willingness to
participate, uncertainties in demand and VRES generation into further
investigations.
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• Lastly, changes in consumer behaviour are not accounted for in this
thesis. However, there are many efforts to achieve sufficient behaviour,
and a changing world will likely change how electricity is consumed.
As an example, increasing temperatures might make the use of air
conditioning more common in future scenarios. Such developments
should be included in future investigations.

Recommendations

Despite these alleys for future research, this thesis provides valuable insights
and a set of open source tools that can be used for further investigations
on decentralised flexibility in renewable power systems. From these, the
following recommendations are derived.

• Decentralised flexibility options offer a large potential to supply geo-
graphic and temporal flexibility needs. This potential should be used
and future research and implementation should focus on how to
untap it.

• Adapted electricity tariffs are one possible measure to leverage the
flexibility potential of decentralised flexibility options if designed well.
However, they can also have the opposite effect. While pure energy-
based tariffs can lead to unwanted synchronisation and increase
in geographic and temporal flexibility needs, a simple additional
peak-based component on both load and feed-in can largely avoid
these negative effects. We therefore recommend to use a combination
of energy- and power-based price components to limit the risk of
synchronisation.

• Furthermore, the negative effects seem manageable at lower penetra-
tions of distributed energy resources. An early adoption of different
tariff designs could therefore allow to gather data and learn about
consumer reaction and acceptance at a low risk for the distribution
grids and should therefore be pushed.

• Lastly, the results imply that for high penetrations of distributed
energy resources and high levels of flexibility, passive price incentives
might not be the right measure of choice. A direct integration into the
market through aggregators might be the preferable option in this
case and should be further investigated.
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Summarising, the next step should be to translate the developed insights
and recommendations into the real world and to start to leverage decen-
tralised flexibility from an early stage.
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M O D E L L I N G O F F L E X I B I L I T Y O P T I O N S

a.1 overview of models and their evaluation

Table A.1: Overview of models (m) and frameworks (f) under consideration

Name
(m/f)

Modelling
language

Short description

backbone (f) GAMS backbone is an adaptable energy systems modelling frame-
work. It is an optimisation framework, based on mixed-
integer programming. [255]

Balmorel

(m)
GAMS Balmorel is a partial equilibrium model for optimising

and analysing energy systems focusing on the interna-
tional electricity and combined heat and power sector. [256]

Calliope (f) Python Calliope is an energy systems modelling framework with
a high temporal and spatial resolution. The framework is
based on scale-agnostic formulation. [257]

DIETER (m) GAMS DIETER stands for dispatch and investment evaluation tool
with endogenous renewables. The model was developed to
study the role of storage and further flexibility options. It
identifies cost-minimising combinations of power produc-
tion, demand-side-management and storage capacities, tak-
ing into consideration reserve and wholesale markets. [258]

Dispa-SET
(m)

GAMS &
Python

Dispa-SET is an optimisation model for unit-commitment
and dispatch. It focuses on flexibility and balancing prob-
lems. [259]

eGo (m) Python eGo stands for electricity grid optimisation. The model is an
intersection for the high- and medium voltage layer. It is
used to simulate grid and storage development costs for
all voltage layers. The two tools eTraGo and eDisGo, parts
of the eGo project, focus on the simulation of transmission
and distribution grids, respectively. [74]

EMMA (m) GAMS EMMA stands for European electricity market model. It is
a partial equilibrium optimisation model, which models
prices, capacities, output, profits and deal flows in the
electricity market. [260]

Continued on next page
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Table A.1 – Continued from previous page

Name
(m/f)

Modelling
language

Short description

EnergyPLAN
(m)

Delphi &
Pascal

EnergyPlan is a model for the design of energy planning
strategies. It simulates the operation of national energy
systems and is based on economic and technical analyses
of different implementations of energy systems and invest-
ments. [261]

EnergyScope

(m)
GLPK &
GLPSOL

EnergyScope is a linear optimisation model for planning
urban and regional energy systems for the purpose of
optimising investment and operating strategies. [262]

FlexiGIS (m) Python FlexiGIS stands for Flexibilisation in Geographic Information
Systems. It is a modelling platform for energy systems
and flexibility options in urban areas. FlexiGIS uses geo-
referenced urban energy infrastructure for simulating local
electricity consumption, power generation and the distri-
bution to decentralised storage in urban settings. [263]

Frigg (m) Python Frigg is the soft-linking of frameworks to model demand
flexibility through a set of differential equations and a
dynamic price-making algorithm to minimise system costs.
The physical side of the energy system can be modelled
by well-established frameworks such as TIMES, Balmorel

or Calliope. The model uses data from these frameworks,
generates hourly prices and simulates the demand side.
The flexibility of the demand side can be implemented
by calculating energy system equilibria by returning a
changed demand level to the energy system model. [264]

GridCal (m) Python GridCal is an optimisation tool for modelling transmis-
sion as well as distribution grids. It allows an extension by
building or reusing parts of other models. [265]

IRENA Flex-
Tool (m)

GLPK IRENA FlexTool stands for International Renewable Energy
Agency Flexibility Tool. It is a detailed tool for analysing
the flexibility of energy systems and their optimal costs,
including innovative technologies that provide new flexi-
bility options. [266]

oemof (f) Python oemof stands for open energy modelling framework. It is a
modular open source framework for cross-sectoral, multi-
regional and time-step-flexible energy system modelling,
based on a linear optimisation library. [267]

OMEGAlpes

(m)
Python OMEGAlpes stands for Generation of Optimisation Mod-

els As Linear Programming for Energy Systems. It is an
energy systems modelling tool for linear optimisation.
OMEGAlpes is based on the linear programming (LP)
modeller PuLP, which is written in Python. [268]

Continued on next page
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Table A.1 – Continued from previous page

Name
(m/f)

Modelling
language

Short description

OSeMOSYS
(f)

GLPK &
Python

OSeMOSYS stands for Open Source Energy modelling System.
The framework enables powerful energy systems analysis
and prototyping of new energy model formulations focus-
ing on medium and long-term time scopes. It is based on
linear optimisation. [269]

pandapower

(m)
Python pandapower is a simulation tool for the detailed mod-

elling of power systems. The tool, based on the Python
data analysis library pandas and the power system anal-
ysis toolbox PYPOWER is a simple network calculation
program. [270]

PyPSA (m) Python PyPSA stands for Python for Power System Analysis. It is a
simulation and optimisation toolbox for energy systems,
especially for modelling long time-series and large-scale
networks. [271]

region4FLEX
(m)

Python region4FLEX is an optimisation model for load shifting
potentials in the German high voltage network, which
includes the electricity and heat sector. [272]

RTestPSM
(m)

Python The test case renewable power system models were devel-
oped in the Calliope framework and are an easy way to
approach energy system modelling. The models, which
can be run in different optimisation modes, provide gen-
eration and transmission expansion planning, economic
dispatch and unit commitment-type power system mod-
els. [273]

TIMES (f) GAMS TIMES stands for The Integrated MARKAL-EFOM System.
TIMES is a energy system model generator that combines
a technical engineering approach with an economic ap-
proach on energy modelling. It is based on linear program-
ming [274]

TransiEnt

(m)
Modelica TransiEnt is a dynamic system simulation model library

that simulates integrated energy networks in different sce-
narios with a high share of renewable energies. Simulations
are based on differential algebraic equations. [275]

urbs (f) Python urbs is an optimisation model generator for capacity ex-
pansion planning and unit commitment for distributed
energy systems. It is based on linear programming, and
focuses on the optimisation of storage sizing and use. [276]

Continued on next page
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Name
(m/f)

Modelling
language

Short description

xeona (m) UML &
C++

xeona stands for extensible entity-oriented optimisation-based
network-mediated analysis. xeona is an object-oriented sim-
ulation environment designed to facilitate sustainability
policies taking into account uncertainties. The model com-
bines multi-agent simulation with high-resolution system
optimisation modelling. [277]

Table A.2: Model rating methodology

Category Specification Rating

General

Geographic
scope

Local (NUTS3); used, local (NUTS3) /possible, regional;
used, regional; possible, national; used, national; possi-
ble, international; used, international; possible

Temporal scope Very short; used, very short; possible, short; used, short;
possible, intermediate; used, intermediate; possible,
long; used, long; possible

Temporal resolu-
tion

<Hourly; used, <hourly; possible, hourly used; hourly;
possible, intermediate; used, intermediate; possible, an-
nual; used, annual; possible

Probability Yes: 1; no: 0

Decision making Perfect foresight & rolling horizon; myopic foresight &
decision- / agent based = 1;
rolling horizon; myopic foresight & decision-; agent
based = 0.8,
perfect foresight & rolling horizon; myopic foresight or
perfect foresight & decision-; agent based = 0.6,
rolling horizon; myopic foresight or decision-; agent
based = 0.4,
perfect foresight = 0.2,
else = 0

Social factors Yes: 1; no: 0

Characte-
ristics

Efficiency Function: 1; fixed value: 0.5; ∈ operational characteris-
tics

Ramping Yes: 1; no: 0; ∈ operational characteristics

Response time Yes: 1; no: 0; ∈ operational characteristics

Recovery time Yes: 1; no: 0; ∈ operational characteristics

Continued on next page
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Table A.2 – Continued from previous page

Category Specification Rating

Network

Distribution grid Defined: 1; possible: 0.5

Transmission
grid

Defined: 1; possible: 0.5

Network exten-
sions

Defined: 1; possible: 0.5

Switches Defined: 1; possible: 0.5

Grid representa-
tion

alternating current (AC) power flow (PF) & direct cur-
rent (DC) PF & inter-connectors & transfer capacity = 1;
AC PF & DC PF & inter-connectors = 0.86;
AC PF & DC PF & transfer capacity = 0.71;
AC PF & DC PF = 0.57;
AC PF & transfer capacity or DC PF & transfer capacity
= 0.43;
AC PF or DC PF = 0.28;
else: 0

Grid ancillary
services

Spinning reverse, balancing energy, sheddable loads,
feed-in management, redispatch, power factor correc-
tions, curtailment, black start

Import Flow based: 1; simplified: 0.5

Supply

Coal defined: 1; possible: 0.5

Lignite defined: 1; possible: 0.5

Oil defined: 1; possible: 0.5

Natural gas defined: 1; possible: 0.5

Combined
heat and
power (CHP)

defined: 1; possible: 0.5

Combined
cycle gas tur-
bine (CCGT)

defined: 1; possible: 0.5

Open-cycle gas
turbine (OCGT)

defined: 1; possible: 0.5

Bio energy defined: 1; possible: 0.5

Hydro reservoirs defined: 1; possible: 0.5

Geothermal en-
ergy

defined: 1; possible: 0.5

Concentrated so-
lar power

defined: 1; possible: 0.5

Continued on next page
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Category Specification Rating

PV defined: 1; possible: 0.5

Wind onshore defined: 1; possible: 0.5

Wind offshore defined: 1; possible: 0.5

River hydro defined: 1; possible: 0.5

Wave power defined: 1; possible: 0.5

Tidal power defined: 1; possible: 0.5

Proton exchange
membrane fuel
cell (PEMFC)

defined: 1; possible: 0.5

Solid oxide fuel
cell (SOFC)

defined: 1; possible: 0.5

Nuclear defined: 1; possible: 0.5

Curtailed opera-
tion

yes: 1; no: 0; ∈ Technology Specifications

Minimum load yes: 1; no: 0; ∈ Technology Specifications

Discrete capacity
expansion

yes: 1; no: 0

Demand

Households Defined: 1; possible: 0.5

Industrial load Defined: 1; possible: 0.5

Service sector Defined: 1; possible: 0.5

Maximum de-
ferrable load

Time- & type dependent =1;
Type dependent or time dependent = 2

3 ;
Fixed value = 1

3 ; ∈ technology specifications

Shifting time Yes: 1; no: 0; ∈ technology specifications

Price elasticity Yes: 1; no: 0

Storage

Batteries Defined: 1; possible: 0.5

Storage imple-
mentation

Dynamic: 1; static: 0.5

Ageing Cycle ageing; calendrical ageing; ∈ technology specifi-
cations

Self-discharge Yes: 1; no: 0; ∈ technology specifications

Continued on next page
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Category Specification Rating

pumped hydro
storage (PHS)

Defined: 1; possible: 0.5

compressed air
energy storage
(CAES)

Defined: 1; possible: 0.5

Capacitors Defined: 1; possible: 0.5

Flywheels Defined: 1; possible: 0.5

Sector
coupling

Power-to-gas Defined: 1; possible: 0.5

Power-to-
hydrogen

Defined: 1; possible: 0.5

Heat pumps Defined: 1; possible: 0.5

Electric vehicles Defined: 1; possible: 0.5

Synthetic fuels Defined: 1; possible: 0.5

Heat storage Defined: 1; possible: 0.5

Vehicle-to-grid Defined: 1; possible: 0.5

Heat sector Endogenous disaggregated technology & endogenous
disaggregated demand = 1;
Endogenous disaggregated technology or endogenous
disaggregated demand = 2

3 ;
Exogenous aggregated demand = 1

3 ;
Heat sector excluded or not specified = 0

Transport sector Endogenous disaggregated technology & endogenous
disaggregated demand = 1;
Endogenous disaggregated technology or endogenous
disaggregated demand = 2

3 ;
Exogenous aggregated demand = 1

3 ;
Transport sector excluded or not specified = 0

Sector coupling
demand

If power-to-gas or power-to-hydrogen or heat pumps or
electric vehicles was ticked as defined or possible:
Shifting time: yes = 1

3 ;
Price elasticity: yes = 1

3 ;
Rating of maximum deferrable load derived by 3; ∈
technology specifications

Sector coupling
supply

If CHP was ticked as defined or possible:
Minimum load: yes = 0.5;
Discrete power expansion: yes = 0.5; ∈ technology spec-
ifications

Continued on next page
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Category Specification Rating

Sector coupling
storage

If synthetic fuels or heat storage or vehicle-to-grid was
ticked as defined or possible:
Self-discharge: yes = 1

3 ;
Cycle ageing: yes = 1

6 ;
Calendrical ageing: yes = 1

6 ;
Storage implementation: dynamic = 1

3 ;
Storage implementation: fixed; static = 1

6 ; ∈ technology
specifications

a.2 additional results for individual flexibility categories

0 25 50 75 100
Share of models [%]

Perfect Foresight
Myopic Foresight

Decision- /
Agentbased

Other
None

Decision Making Process

0 25 50 75 100
Share of models [%]

Probalistic
Behavior

Social
Factors

General Factors

0 50 100
Share of models [%]

Fixed Efficiency
Dynamic Efficiency

Ramping
Response Time
Recovery Time

Operations

Figure A.1: Representation of decision-making processes (upper left), proba-
bilistic behaviour and social factors (upper right) and operational
characteristics (bottom)
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Figure A.2: Representation of supply-side technologies (left) and specifications
(right)
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Figure A.3: Representation of demand-side technologies (left) and specifications
(right)
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Figure A.4: Representation of storage technologies (left) and specifications (right)
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Figure A.5: Representation of network technologies (upper left), specifications
(upper right) and ancillary services (bottom)
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Figure A.6: Representation of sector coupling technologies (upper left), heat
(upper right) and transport sectors (bottom)

a.3 modelling of distribution grids

The traditional planning of grids is based on worst case analysis using
simultaneity factors [22]. To compare our time series based approach with
the traditional grid planning, we calculate the reinforcement costs for both
cases (see Fig. 3.8). We use the standard simultaneity factors defined in
eDisGo, which are summarised in Tab. A.3. The simultaneity factors are
defined for the load and feed-in case and are differentiated for the medium
voltage (MV) and the low voltage (LV). The values are inspired by other
technical reports [85], [278].



368 modelling of flexibility options

Table A.3: Standard simultaneity factors as defined in eDisGo

Load Case Feed-in Case
Technology MV LV MV LV

Conventional load 1.0 1.0 0.15 0.1
Heat pumps 0.8 1.0 0.0 0.0
Private charging points 0.2 1.0 0.0 0.0
Public charging points 1.0 1.0 0.0 0.0

Photovoltaic 0.0 0.85

Wind 0.0 1.0
Other generation 0.0 1.0



B
A D D I T I O N A L M AT E R I A L O N T H E E VA L UAT I O N O F
TA R I F F D E S I G N S

The values for the relative weights chosen by the interviewed experts are
presented in Tab. B.1, and indicator values for the low and high flexibility
scenarios in Tab. B.2.

All mathematical symbols are summarised in Tab. B.3 and Tab. B.5. Ta-
ble B.3 includes the sets used in the sub- and super-scripts and Tab. B.5 the
indicators and relevant parameters.

Table B.1: Weights in percent for the investigated criteria determined by the
interviewed experts.

Weights [%] DSO Authority Regulator Politics Third Party

WEG 78.5 72.9 79.6 9.1 45.5

WFAC 14.9 16.3 12.1 45.5 9.1

WEDER 3.3 2.2 4.1 34.1 11.4

WEEU 3.3 8.7 4.1 11.4 34.1
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Table B.2: Indicator values for investigated tariffs in Scenario 1 (low flexibility)
and Scenario 4 (full flexibility) of grid PV-2.

Scenario 1

Ec Ed/n Er Er−mv CL CSG CLF ErCLF EcSr CLFSr

Efficient Grid - IEG
NT 0.35 0.29 0.47 0.29 0.86 0.56 0.97 0.87 -1.08 0.96

Fairness and Customer
Acceptance - IFCA

NT

0.56 0.53 0.53 0.55 0.56 0.62 0.56 0.55 0.56 0.56

Expansion of DERs -
IEDER
NT

1.10 1.15 1.07 1.07 0.92 1.12 0.80 1.07 1.10 0.80

Efficient Use of Elec-
tricity - IEEU

NT

0.75 0.73 0.74 0.74 0.62 0.69 0.62 0.66 0.77 0.63

Scenario 4

Ec Ed/n Er Er−mv CL CSG CLF ErCLF EcSr CLFSr

Efficient Grid - IEG
NT 0.36 0.07 0.18 -0.57 0.30 0.40 0.80 0.72 -0.51 0.74

Fairness and Customer
Acceptance - IFCA

NT

0.42 0.43 0.46 0.43 0.44 0.42 0.44 0.45 0.42 0.44

Expansion of DERs -
IEDER
NT

0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Efficient Use of Elec-
tricity - IEEU

NT

0.75 0.68 0.69 0.69 0.59 0.70 0.57 0.60 0.74 0.61
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Table B.3: Sets used in sub- and superscripts.

Name Description

EC Evaluation Criteria

EG Criterion of an efficient grid (= cost-reflection)

FAC Criterion of fairness and customer acceptance

PO Criterion of other political objectives

SC Sub-Criteria

EDER Sub-criterion of expansion of distributed energy resources

EEU Sub-criterion of efficient use of electricity

ROCR Sub-criterion of reflection of capacity-related costs

ROUR Sub-criterion of reflection of usage-related costs

NT Network Tariffs

VT Volumetric tariff, used as the reference; equivalent to Ec

S Scenarios

S1- S4 Scenarios with respectively 10 % (S1), 50 % (S2), 90 % (S3) and
100 % (S4) of residential loads owning HPs, EVs and PV-battery-
systems

SQ Status quo

CG Customer Groups

HH Inflexible consumers

EV EV owners

HP HP owners

PV PV owners

PV & BESS Owners of PV-battery-systems

U All users

VU Vulnerable users

T Time Steps

Tpeak Subset of time steps when 10 % highest aggregated power peaks
occur
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Table B.5: Indicators and parameters used in the evaluation framework.

Name Description Unit

CNT Total costs under network tariff NT [CHF]

Cu,NT Costs paid by user u under network tariff NT [CHF]

cu,NT Share of costs paid by user u in overall costs under network
tariff NT

[-]

Ca f ter
NT Costs paid after purchasing a DER under network tariff NT [CHF]

Cbe f ore
NT Costs paid before purchasing a DER under network tariff

NT
[CHF]

CCR
NT Capacity-related costs under network tariff NT [CHF]

cCR
NT Share of usage-related costs in overall costs under network

tariff NT
[-]

CUR
NT Usage-related costs under network tariff NT [CHF]

cUR
NT Share of usage-related costs in overall costs under network

tariff NT
[-]

CCNT Aggregated contracted capacity under network tariff NT [kW]

ccu,NT Share of capacity contracted by user u in aggregated con-
tracted capacity under network tariff NT

[-]

cc‘u,NT Adjusted share of capacity contracted by user u in aggregated
contracted capacity under network tariff NT

[-]

CCRNT Indicator for the reduction of capacity-related costs under
network tariff NT

[-]

crDERs
u,NT Costs for user or user group u after purchasing DERs (PV

and PV-battery-system) under network tariff NT relative to
the costs before purchasing the DERs

[-]

crder
u,NT Costs for user or user group u by purchasing DER der (PV

or PV-battery-system) under network tariff NT relative to
the costs before purchasing the DER

[-]

gu Group share of user or user group u in total number of users [-]

INT Overall ranking of network tariff NT [-]

Ii
NT Indicator for the (sub-)criterion i under network tariff NT,

i ∈ {EG, FAC, EDER, EEU}
[-]

Ppeak
NT Aggregated power peak under network tariff NT [kW]

Ppeak
u,NT Contribution of user u to aggregated power peak under

network tariff NT
[kW]

pu,NT Share of aggregated power peak caused by user u under
network tariff NT

[-]



additional material on the evaluation of tariff designs 373

Name Description Unit

p‘u,NT Adjusted share of aggregated power peak caused by user u
under network tariff NT

[-]

P(t) Aggregated power drawn from overlying grid at time step
t

[kW]

PENT Aggregated purchased electricity under network tariff NT [kWh]

PEu,NT Purchased electricity of user or user group u under network
tariff NT

[kWh]

peu,NT Share of purchased electricity of user or user group u in
aggregated purchased electricity under network tariff NT

[-]

Q(p) Lowest power value within share of p highest aggregated
power peaks

[kW]

rcu,NT Relative cost share paid by user or user group u (in relation
to their group share) under network tariff NT

[-]

ROCNT Indicator for the reflection of costs under network tariff NT [-]

ROCcorr
NT Indicator for the correlation between cost contribution and

paid costs under network tariff NT
[-]

ROCslope
NT Indicator for the slope of a linear regression between cost

contribution and paid costs under network tariff NT
[-]

ROENT Indicator for the reflection of purchased electricity under
network tariff NT

[-]

ROEcorr
NT Indicator for the correlation between purchased electricity

and paid costs under network tariff NT
[-]

ROEslope
NT Indicator for the slope of a linear regression between pur-

chased electricity and paid costs under network tariff NT
[-]

SERNT Indicator of the reduction in total shifted energy under
network tariff NT

[-]

UCRNT Indicator for the reduction of usage-related costs under
network tariff NT

[-]

Wi Relative importance of evaluation criterion i on first level
of hierarchy

[-]

W ′
j Relative importance of sub-criterion j on the second level

of hierarchy
[-]

XNT Placeholder for parameter value under network tariff NT
Xre f Placeholder for reference value of a certain parameter



374 additional material on the evaluation of tariff designs

Name Description Unit

β0, β1 Y-interception and slope of a linear regression function
between paid cost share and cost contribution

[-]

β2, β3 Y-interception and slope of a linear regression function
between paid cost share and purchased electricity

[-]

πbuy Price for electricity purchased from the grid [CHF/kWh]

πNT Price values under network tariff NT [CHF/kW(h)]

πsell Price for electricity sold to the grid [CHF/kWh]
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